1.

Bigraph construction

In Commex we have a bipartite network of scholars and terms (1 scholar has multiple
terms, 1 term has multiple scholars associated to it). The python code is based on a php-code
from old Tinaweb so I will explain how the the original code (php-source) works.

1.1.

Algorithm for Commex

- One type of nodes are the scholars.

- Other type of nodes are the keywords.

In the practice, for steps 2 and 3 we use the file |get_scholar_graph.phpl For the remaining
steps (4 and so on) we use the file |gexf_generator.php. Considering this, please observe in
each step the corresponding lines of code wich are specified inside brackets | [.

1.

The user selects an “ego” in order to visualize a network, in this case is a scholar
(named login).

. keywords_ids <— Retrieve all the keywords related to the selected scholar (login).

[47-50]
For each keyword_id on keywords_ids: [52-58]

- scholars <— Retrieve all the scholars associated with this keyword_id (firstly
pushed to scholar_array)

For each scholar in scholars:[31-60]

- scholar_keywords <— Retrieve all the keywords associated with this scholar. [34]
- Iterate in scholar_keywords and build the termsMatriz. [36-60]

terms_array «— Retrieve all the keywords that exist in termsMatriz. [73-88]
For each term in terms_array: [106-153]

- term_scholars <— Retrieve all the scholars related to this term. [109-115]
- Iterate in term_scholars and build the scholarsMatriz. [117-141]
- Save the term as nodeB in the GEXF/JSON. [142-151]

scholars «— From now, inside every bucle, we will consider only scholars that exist in
scholarsMatriz. [155-160)

For each scholar in scholars: [155-241]
- Save scholar as nodeA in the GEXF/JSON.
For each scholar in scholars: [248-264)]

- For each keyword belonging to scholar.keywords: [257-264]

- Save as bipartite-edge in the GEXF/JSON with
Source=scholar, Target=keyword, Weight=1


https://dl.dropboxusercontent.com/u/9975992/get_scholar_graph.php
https://dl.dropboxusercontent.com/u/9975992/gexf_generator.php

10. For each term in terms_array: [268-285]
- neighbors «— Retrieve all terms in termsM atrixz which are related to the occur-
rences of this term. [270-273]
- For each neigh in neighbors: [277-284]
- Save as type2-edge in the GEXF/JSON with

occurrences of neigh
occurrences of term

Source=term, Target=neigh, Weight=
11. For each scholar in scholars:
- neighbors <— Retrieve all scholars in scholarsMatrixz which are related to the
co-occurrences of this scholar. [291-294]

- For each neigh in neighbors:

- Save as typel-edge in the GEXF/JSON with
Source=scholar, Target=neigh,

Weight=jaccard(occurrences of scholar,occurrences of neigh, co-occurrences of scholar)

1.2. Generic algorithm definition

- The scholars will be represented by nodesA.

- The terms will be represented by nodesB.

1. The user selects an “ego” in order to visualize the related network. In this case is an
individual (named ¢) where g € nodesA.

2. B, +— Retrieve all the b € nodesB where each b is related with q.
3. For each B,; in B,:

- A «— Retrieve all the a € nodesA associated with By; (equivalent to A[id].push(By;).
4. For each A; in A:

- Ba, <— Retrieve all the b € nodesB where b is associated with A;.
- Iterate in B4, and build the BMatriz.

5. B <— Retrieve all the b € nodesB where b exists in B Matriz.
6. For each B; in B:

- Ap, <— Retrieve all the a € nodesA where a belongs to B;.
- Iterate in Ap;:

- Build the AMatrix.
- Save B; as nodeB in the GEXF /JSON.

7. A <— Retrieve the elements in nodesA that exists in AMatriz. (A is redefined)
8. For each A; in A:
- Save A; as nodeA in the GEXF/JSON.



9. For each A; in A:

- For each b € nodesB belonging to A;:
- Save as bipartite-edge in the GEXF /JSON with Source=A;, Target=b, Weight=1

10. For each B; in B:

- neighborsB; «— Retrieve all b € nodesB belonging to B;.
- For each neighborB;; in neighborsB;:
- Save as type2-edge in the GEXF/JSON with

occurrences of neighbor B; ;
occurrences of B;

Source=DB;, Target=neighbor B;;, Weight=
11. For each A; in A:

- neighborsA; «— Retrieve all a € nodesA belonging to A;.
- For each neighborA;j in neighborsA;:

- Save as typel-edge in the GEXF/JSON with
Source=A;, Target=neighborA;;,
Weight=jaccard(occurrences of A;, occurrences of neighborA;j, co-occurrences of A;)



