
1. Bigraph construction

In Commex we have a bipartite network of scholars and terms (1 scholar has multiple
terms, 1 term has multiple scholars associated to it). The python code is based on a php-code
from old Tinaweb so I will explain how the the original code (php-source) works.

1.1. Algorithm for Commex

- One type of nodes are the scholars.

- Other type of nodes are the keywords.

In the practice, for steps 2 and 3 we use the file get scholar graph.php. For the remaining
steps (4 and so on) we use the file gexf generator.php. Considering this, please observe in
each step the corresponding lines of code wich are specified inside brackets ] [.

1. The user selects an “ego” in order to visualize a network, in this case is a scholar
(named login).

2. keywords ids ←− Retrieve all the keywords related to the selected scholar (login).
[47-50]

3. For each keyword id on keywords ids: [52-58]

· scholars ←− Retrieve all the scholars associated with this keyword id (firstly
pushed to scholar array)

4. For each scholar in scholars:[31-60]

· scholar keywords←− Retrieve all the keywords associated with this scholar. [34]

· Iterate in scholar keywords and build the termsMatrix. [36-60]

5. terms array ←− Retrieve all the keywords that exist in termsMatrix. [73-88]

6. For each term in terms array: [106-153]

· term scholars←− Retrieve all the scholars related to this term. [109-115]

· Iterate in term scholars and build the scholarsMatrix. [117-141]

· Save the term as nodeB in the GEXF/JSON. [142-151]

7. scholars←− From now, inside every bucle, we will consider only scholars that exist in
scholarsMatrix. [155-160]

8. For each scholar in scholars: [155-241]

· Save scholar as nodeA in the GEXF/JSON.

9. For each scholar in scholars: [248-264]

· For each keyword belonging to scholar.keywords: [257-264]

· Save as bipartite-edge in the GEXF/JSON with
Source=scholar, Target=keyword, Weight=1

1

https://dl.dropboxusercontent.com/u/9975992/get_scholar_graph.php
https://dl.dropboxusercontent.com/u/9975992/gexf_generator.php


10. For each term in terms array: [268-285]

· neighbors←− Retrieve all terms in termsMatrix which are related to the occur-
rences of this term. [270-273]

· For each neigh in neighbors: [277-284]

· Save as type2-edge in the GEXF/JSON with

Source=term, Target=neigh, Weight=occurrences of neigh
occurrences of term

11. For each scholar in scholars:

· neighbors ←− Retrieve all scholars in scholarsMatrix which are related to the
co-occurrences of this scholar. [291-294]

· For each neigh in neighbors:

· Save as type1-edge in the GEXF/JSON with
Source=scholar, Target=neigh,
Weight=jaccard(occurrences of scholar, occurrences of neigh, co-occurrences of scholar)

1.2. Generic algorithm definition

- The scholars will be represented by nodesA.

- The terms will be represented by nodesB.

1. The user selects an “ego” in order to visualize the related network. In this case is an
individual (named q) where q ∈ nodesA.

2. Ba ←− Retrieve all the b ∈ nodesB where each b is related with q.

3. For each Bai in Ba:

· A←− Retrieve all the a ∈ nodesA associated with Bai (equivalent to A[id].push(Bai).

4. For each Ai in A:

· BAi ←− Retrieve all the b ∈ nodesB where b is associated with Ai.

· Iterate in BAi and build the BMatrix.

5. B ←− Retrieve all the b ∈ nodesB where b exists in BMatrix.

6. For each Bi in B:

· ABi ←− Retrieve all the a ∈ nodesA where a belongs to Bi.

· Iterate in ABi :

· Build the AMatrix.

· Save Bi as nodeB in the GEXF/JSON.

7. A←− Retrieve the elements in nodesA that exists in AMatrix. (A is redefined)

8. For each Ai in A:

· Save Ai as nodeA in the GEXF/JSON.

2



9. For each Ai in A:

· For each b ∈ nodesB belonging to Ai:

· Save as bipartite-edge in the GEXF/JSON with Source=Ai, Target=b, Weight=1

10. For each Bi in B:

· neighborsBi ←− Retrieve all b ∈ nodesB belonging to Bi.

· For each neighborBij in neighborsBi:

· Save as type2-edge in the GEXF/JSON with

Source=Bi, Target=neighborBij , Weight=
occurrences of neighborBij

occurrences of Bi

11. For each Ai in A:

· neighborsAi ←− Retrieve all a ∈ nodesA belonging to Ai.

· For each neighborAij in neighborsAi:

· Save as type1-edge in the GEXF/JSON with
Source=Ai, Target=neighborAij ,
Weight=jaccard(occurrences of Ai, occurrences of neighborAij , co-occurrences of Ai)

3


