{-| Module : Gargantext.Core.Methods.Distances.Matrice Description : Copyright : (c) CNRS, 2017-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX This module aims at implementig distances of terms context by context is the same referential of corpus. Implementation use Accelerate library which enables GPU and CPU computation See Gargantext.Core.Methods.Graph.Accelerate) -} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE ViewPatterns #-} module Gargantext.Core.Methods.Distances.Matrice where -- import qualified Data.Foldable as P (foldl1) -- import Debug.Trace (trace) import Data.Array.Accelerate import Data.Array.Accelerate.Interpreter (run) import Gargantext.Core.Methods.Matrix.Accelerate.Utils import qualified Gargantext.Prelude as P -- * Metrics of proximity ----------------------------------------------------------------------- -- ** Conditional distance -- *** Conditional distance (basic) -- | Conditional distance (basic version) -- -- 2 main metrics are actually implemented in order to compute the -- proximity of two terms: conditional and distributional -- -- Conditional metric is an absolute metric which reflects -- interactions of 2 terms in the corpus. measureConditional :: Matrix Int -> Matrix Double --measureConditional m = run (matMiniMax $ matProba (dim m) $ map fromIntegral $ use m) measureConditional m = run $ matProba (dim m) $ map fromIntegral $ use m -- *** Conditional distance (advanced) -- | Conditional distance (advanced version) -- -- The conditional metric P(i|j) of 2 terms @i@ and @j@, also called -- "confidence" , is the maximum probability between @i@ and @j@ to see -- @i@ in the same context of @j@ knowing @j@. -- -- If N(i) (resp. N(j)) is the number of occurrences of @i@ (resp. @j@) -- in the corpus and _[n_{ij}\] the number of its occurrences we get: -- -- \[P_c=max(\frac{n_i}{n_{ij}},\frac{n_j}{n_{ij}} )\] conditional' :: Matrix Int -> (Matrix GenericityInclusion, Matrix SpecificityExclusion) conditional' m = ( run $ ie $ map fromIntegral $ use m , run $ sg $ map fromIntegral $ use m ) where ie :: Acc (Matrix Double) -> Acc (Matrix Double) ie mat = map (\x -> x / (2*n-1)) $ zipWith (+) (xs mat) (ys mat) sg :: Acc (Matrix Double) -> Acc (Matrix Double) sg mat = map (\x -> x / (2*n-1)) $ zipWith (-) (xs mat) (ys mat) n :: Exp Double n = P.fromIntegral r r :: Dim r = dim m xs :: Acc (Matrix Double) -> Acc (Matrix Double) xs mat = zipWith (-) (matSumCol r $ matProba r mat) (matProba r mat) ys :: Acc (Matrix Double) -> Acc (Matrix Double) ys mat = zipWith (-) (matSumCol r $ transpose $ matProba r mat) (matProba r mat) ----------------------------------------------------------------------- -- ** Distributional Distance -- | Distributional Distance metric -- -- Distributional metric is a relative metric which depends on the -- selected list, it represents structural equivalence of mutual information. -- -- The distributional metric P(c) of @i@ and @j@ terms is: \[ -- S_{MI} = \frac {\sum_{k \neq i,j ; MI_{ik} >0}^{} \min(MI_{ik}, -- MI_{jk})}{\sum_{k \neq i,j ; MI_{ik}>0}^{}} \] -- -- Mutual information -- \[S_{MI}({i},{j}) = \log(\frac{C{ij}}{E{ij}})\] -- -- Number of cooccurrences of @i@ and @j@ in the same context of text -- \[C{ij}\] -- -- The expected value of the cooccurrences @i@ and @j@ (given a map list of size @n@) -- \[E_{ij}^{m} = \frac {S_{i} S_{j}} {N_{m}}\] -- -- Total cooccurrences of term @i@ given a map list of size @m@ -- \[S_{i} = \sum_{j, j \neq i}^{m} S_{ij}\] -- -- Total cooccurrences of terms given a map list of size @m@ -- \[N_{m} = \sum_{i,i \neq i}^{m} \sum_{j, j \neq j}^{m} S_{ij}\] -- distributional :: Matrix Int -> Matrix Double distributional m = -- run {- $ matMiniMax -} run $ diagNull n $ rIJ n $ filterWith 0 100 $ filter' 0 $ s_mi $ map fromIntegral {- from Int to Double -} $ use m {- push matrix in Accelerate type -} where _ri :: Acc (Matrix Double) -> Acc (Matrix Double) _ri mat = mat1 -- zipWith (/) mat1 mat2 where mat1 = matSumCol n $ zipWith min (_myMin mat) (_myMin $ filterWith 0 100 $ diagNull n $ transpose mat) _mat2 = total mat _myMin :: Acc (Matrix Double) -> Acc (Matrix Double) _myMin = replicate (constant (Z :. n :. All)) . minimum -- TODO fix NaN -- Quali TEST: OK s_mi :: Acc (Matrix Double) -> Acc (Matrix Double) s_mi m' = zipWith (\x y -> log (x / y)) (diagNull n m') $ zipWith (/) (crossProduct n m') (total m') -- crossProduct n m' total :: Acc (Matrix Double) -> Acc (Matrix Double) total = replicate (constant (Z :. n :. n)) . sum . sum n :: Dim n = dim m rIJ :: (Elt a, Ord a, P.Fractional (Exp a), P.Num a) => Dim -> Acc (Matrix a) -> Acc (Matrix a) rIJ n m = matMiniMax $ divide a b where a = sumRowMin n m b = sumColMin n m ----------------------------------------------------------------------- ----------------------------------------------------------------------- -- * Specificity and Genericity {- | Metric Specificity and genericity: select terms - let N termes and occurrences of i \[N{i}\] - Cooccurrences of i and j \[N{ij}\] - Probability to get i given j : \[P(i|j)=N{ij}/N{j}\] - Genericity of i \[Gen(i) = \frac{\sum_{j \neq i,j} P(i|j)}{N-1}\] - Specificity of j \[Spec(i) = \frac{\sum_{j \neq i,j} P(j|i)}{N-1}\] - \[Inclusion (i) = Gen(i) + Spec(i)\) - \[GenericityScore = Gen(i)- Spec(i)\] - References: Science mapping with asymmetrical paradigmatic proximity Jean-Philippe Cointet (CREA, TSV), David Chavalarias (CREA) (Submitted on 15 Mar 2008), Networks and Heterogeneous Media 3, 2 (2008) 267 - 276, arXiv:0803.2315 [cs.OH] -} type GenericityInclusion = Double type SpecificityExclusion = Double data SquareMatrix = SymetricMatrix | NonSymetricMatrix type SymetricMatrix = Matrix type NonSymetricMatrix = Matrix incExcSpeGen :: Matrix Int -> ( Vector GenericityInclusion , Vector SpecificityExclusion ) incExcSpeGen m = (run' inclusionExclusion m, run' specificityGenericity m) where run' fun mat = run $ fun $ map fromIntegral $ use mat -- | Inclusion (i) = Gen(i)+Spec(i) inclusionExclusion :: Acc (Matrix Double) -> Acc (Vector Double) inclusionExclusion mat = zipWith (+) (pV mat) (pV mat) -- | Genericity score = Gen(i)- Spec(i) specificityGenericity :: Acc (Matrix Double) -> Acc (Vector Double) specificityGenericity mat = zipWith (+) (pH mat) (pH mat) -- | Gen(i) : 1/(N-1)*Sum(j!=i, P(i|j)) : Genericity of i pV :: Acc (Matrix Double) -> Acc (Vector Double) pV mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ij mat -- | Spec(i) : 1/(N-1)*Sum(j!=i, P(j|i)) : Specificity of j pH :: Acc (Matrix Double) -> Acc (Vector Double) pH mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ji mat cardN :: Exp Double cardN = constant (P.fromIntegral (dim m) :: Double) -- | P(i|j) = Nij /N(jj) Probability to get i given j --p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (SymetricMatrix e) -> Acc (Matrix e) p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (Matrix e) -> Acc (Matrix e) p_ij m = zipWith (/) m (n_jj m) where n_jj :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e) n_jj myMat' = backpermute (shape m) (lift1 ( \(Z :. (_ :: Exp Int) :. (j:: Exp Int)) -> (Z :. j :. j) ) ) myMat' -- | P(j|i) = Nij /N(ii) Probability to get i given j -- to test p_ji :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e) p_ji = transpose . p_ij -- | Step to ckeck the result in visual/qualitative tests incExcSpeGen_proba :: Matrix Int -> Matrix Double incExcSpeGen_proba m = run' pro m where run' fun mat = run $ fun $ map fromIntegral $ use mat pro mat = p_ji mat {- -- | Hypothesis to test maybe later (or not) -- TODO ask accelerate for instances to ease such writtings: p_ :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e) p_ m = zipWith (/) m (n_ m) where n_ :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e) n_ m = backpermute (shape m) (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int)) -> (ifThenElse (i < j) (lift (Z :. j :. j)) (lift (Z :. i :. i)) :: Exp DIM2) ) ) m -} -- * For Tests (to be removed) -- | Test perfermance with this matrix -- TODO : add this in a benchmark folder distriTest :: Int -> Matrix Double distriTest n = distributional (theMatrix n) {- theResult :: Int -> Matrix Double theResult n | (P.==) n 2 = let r = 1.6094379124341003 in [ 0, r, r, 0] | P.otherwise = [ 1, 1 ] -} colMatrix :: Elt e => Int -> [e] -> Acc (Array ((Z :. Int) :. Int) e) colMatrix n ns = replicate (constant (Z :. (n :: Int) :. All)) v where v = use $ vector (P.length ns) ns