Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
gargantext
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
humanities
gargantext
Commits
73e75f35
Commit
73e75f35
authored
Jan 28, 2015
by
Mathieu Rodic
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[CODE] a little cleaning in `analysis/diachronic_specificity.py`
parent
f8b8799d
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
31 additions
and
18 deletions
+31
-18
diachronic_specificity.py
analysis/diachronic_specificity.py
+31
-18
No files found.
analysis/diachronic_specificity.py
View file @
73e75f35
...
@@ -10,6 +10,8 @@ NodeType = models.NodeType.sa
...
@@ -10,6 +10,8 @@ NodeType = models.NodeType.sa
NodeNgram
=
models
.
Node_Ngram
.
sa
NodeNgram
=
models
.
Node_Ngram
.
sa
NodeNodeNgram
=
models
.
NodeNgramNgram
.
sa
NodeNodeNgram
=
models
.
NodeNgramNgram
.
sa
Ngram
=
models
.
Ngram
.
sa
Ngram
=
models
.
Ngram
.
sa
Node_Metadata
=
models
.
Node_Metadata
.
sa
Metadata
=
models
.
Metadata
.
sa
Node
=
models
.
Node
.
sa
Node
=
models
.
Node
.
sa
Corpus
=
models
.
Corpus
.
sa
Corpus
=
models
.
Corpus
.
sa
...
@@ -36,7 +38,7 @@ def result2dict(query):
...
@@ -36,7 +38,7 @@ def result2dict(query):
return
(
results
)
return
(
results
)
def
diachronic_specificity
(
corpus_id
,
string
,
order
=
True
):
def
diachronic_specificity
(
corpus_id
,
terms
,
order
=
True
):
'''
'''
Take as parameter Corpus primary key and text of ngrams.
Take as parameter Corpus primary key and text of ngrams.
Result is a dictionnary.
Result is a dictionnary.
...
@@ -44,33 +46,44 @@ def diachronic_specificity(corpus_id, string, order=True):
...
@@ -44,33 +46,44 @@ def diachronic_specificity(corpus_id, string, order=True):
Values are measure to indicate diachronic specificity.
Values are measure to indicate diachronic specificity.
Nowadays, the measure is rather simple: distance of frequency of period from mean of frequency of all corpus.
Nowadays, the measure is rather simple: distance of frequency of period from mean of frequency of all corpus.
'''
'''
corpus
=
session
.
query
(
Node
)
.
get
(
int
(
corpus_id
))
ngram_frequency_query
=
(
session
ngram
=
session
.
query
(
Ngram
)
.
filter
(
Ngram
.
terms
==
string
)
.
first
()
.
query
(
Node
.
metadata
[
'publication_year'
],
func
.
count
(
'*'
))
.
join
(
NodeNgram
,
Node
.
id
==
NodeNgram
.
node_id
)
ngram_frequency_query
=
session
.
query
(
Node
.
metadata
[
'publication_year'
],
func
.
count
(
'*'
))
.
join
(
NodeNgram
,
Node
.
id
==
NodeNgram
.
node_id
)
.
filter
(
NodeNgram
.
ngram
==
ngram
)
.
filter
(
Node
.
parent_id
==
corpus
.
id
)
.
group_by
(
Node
.
metadata
[
'publication_year'
])
.
all
()
.
join
(
Ngram
,
Ngram
.
id
==
NodeNgram
.
ngram_id
)
.
filter
(
Ngram
.
terms
==
terms
)
document_year_sum_query
=
session
.
query
(
Node
.
metadata
[
'publication_year'
],
func
.
count
(
'*'
))
.
filter
(
Node
.
parent_id
==
corpus
.
id
)
.
group_by
(
Node
.
metadata
[
'publication_year'
])
.
all
()
.
filter
(
Node
.
parent_id
==
corpus_id
)
.
group_by
(
Node
.
metadata
[
'publication_year'
])
)
document_filterByngram_year
=
result2dict
(
ngram_frequency_query
)
document_all_year
=
result2dict
(
document_year_sum_query
)
document_year_sum_query
=
(
session
.
query
(
Node
.
metadata
[
'publication_year'
],
func
.
count
(
'*'
))
.
filter
(
Node
.
parent_id
==
corpus_id
)
.
group_by
(
Node
.
metadata
[
'publication_year'
])
)
document_filterByngram_year
=
dict
(
ngram_frequency_query
.
all
())
document_all_year
=
dict
(
document_year_sum_query
.
all
())
#print(document_all_year)
#print(document_all_year)
data
=
dict
()
for
year
in
document_all_year
.
keys
():
relative_terms_count
=
dict
()
data
[
year
]
=
document_filterByngram_year
.
get
(
year
,
0
)
/
document_all_year
[
year
]
for
year
,
total
in
document_all_year
.
items
():
terms_count
=
document_filterByngram_year
.
get
(
year
,
0
)
relative_terms_count
[
year
]
=
terms_count
/
total
mean
=
np
.
mean
(
list
(
data
.
values
()))
mean
=
np
.
mean
(
list
(
relative_terms_count
.
values
()))
data_dict
=
dict
(
zip
(
data
.
keys
(),
list
(
map
(
lambda
x
:
x
-
mean
,
data
.
values
()))))
relative_terms_count
=
{
key
:
(
value
-
mean
)
for
key
,
value
in
relative_terms_count
.
items
()
}
if
order
==
True
:
if
order
==
True
:
return
collections
.
OrderedDict
(
sorted
(
data_dic
t
.
items
()))
return
collections
.
OrderedDict
(
sorted
(
relative_terms_coun
t
.
items
()))
else
:
else
:
return
data_dic
t
return
relative_terms_coun
t
# For tests
# For tests
#diachronic_specificity(102750, "bayer", order=True)
# diachronic_specificity(102750, "bayer", order=True)
# diachronic_specificity(26128, "bee", order=True)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment