Is the grid driving you crazy? Relax! Openmole makes it easy!

Up arrow

Mathieu Leclaire // Romain Reuillon

ISCPIF // GeodiverCity ERC

geod
geod

Naturally parallel algorithms
permit to
leverage parallelism

Methods

Design of experiments Optimization Data processing

These methods are time consuming

Computing power


  • Personal computer // 1 to 8 cores
  • Computing server // up to 50 cores
  • Cluster // up to 200 cores
  • Grid // > 2000 cores

European Grid Infrastructure

What does OpenMOLE do ?

It implements exploration algorithms
It transparently delegates computational loads to massively parallel environments

Upscaling

Prototype small
Experiment large

A naturally parallel formalism to design experiments

Embed your model as a black box

C
R
C++
Java
Scala
Scilab
Octave
Python
Netlogo
...

A Netlogo Task in OpenMOLE GUI
Assign execution environments to tasks

Environments already supported by OpenMOLE


  • multi threading
  • remote SSH server
  • PBS Cluster
  • EGI
  • Dirac
  • soon : SLURM, SGE, other cluster batch systems
  • ... and later : private and academic clouds

Powered by GridScale

https://github.com/romainreuillon/gridscale

Scalable library for job and data management on the JVM

OpenMOLE from the GUI

OpenMOLE from DSL

val i1 = Prototype[Int]("i1")
val i2 = Prototype[Int]("i2")
val j = Prototype[Int]("j")

val hello = GroovyTask("hello", "j = Model.compute(i1, i2)")

hello addInput i1
hello addInput i2
hello addOutput j
hello addLib "/path/to/model.jar"

val exploration = ExplorationTask(
    "exploration",
    Factor(i1, 0 to 100 by 2 toDomain) x 
    Factor(i2, new UniformIntDistribution take 10)
  )

val ex = exploration -< (hello by 10 on biomed) toExecution        
ex.start

OpenMOLE from the web server

Download: http://www.openmole.org

Chromosome structuring

C++
2 days per simulation
1600 simulations
8.5 years / CPU
Junier et al, CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the β-globin locus, Nucleic Acids Research, 2012.

SimTRAP project

NetLogo
5 minutes per simulation
100000 simulations
1 year / CPU
PhD thesis of J. Figuel, Modélisation et simulation des comportements piétonniers dans les espaces de transport – Application aux échanges quai / train de voyageurs.

Simpop project

Scala
5 minutes per simulation
360 000 000 simulations
22 years / CPU
Reuillon et al, Algorithmes évolutionnaires sur grille de calcul pour le calibrage de modéles géographiques, proceedings of France Grilles 2012.

The Bioemergences project

C
Image processing

portal access

daily productions
10000 jobs / day
Ralf Mikut et al, Automated Processing of Zebrafish Imaging Data: A Survey, Zebrafish, 2013