Mathieu Leclaire // Romain Reuillon
ISCPIF // GeodiverCity ERC
Naturally parallel algorithms
permit to leverage parallelism
![]() |
![]() |
![]() |
Design of experiments | Optimization | Data processing |
These methods are time consuming
![]() |
European Grid Infrastructure |
It implements exploration algorithms | ![]() |
It transparently delegates computational loads to massively parallel environments | ![]() |
Prototype small
Experiment large
val i1 = Prototype[Int]("i1") val i2 = Prototype[Int]("i2") val j = Prototype[Int]("j") val hello = GroovyTask("hello", "j = Model.compute(i1, i2)") hello addInput i1 hello addInput i2 hello addOutput j hello addLib "/path/to/model.jar" val exploration = ExplorationTask( "exploration", Factor(i1, 0 to 100 by 2 toDomain) x Factor(i2, new UniformIntDistribution take 10) ) val ex = exploration -< (hello by 10 on biomed) toExecution ex.start
Chromosome structuring |
![]() |
![]() |
C++ 2 days per simulation 1600 simulations 8.5 years / CPU |
SimTRAP project |
![]() |
![]() |
NetLogo 5 minutes per simulation 100000 simulations 1 year / CPU |
Simpop project |
![]() |
![]() |
Scala 5 minutes per simulation 360 000 000 simulations 22 years / CPU |
The Bioemergences project |
![]() |
![]() |
C Image processing portal access daily productions 10000 jobs / day |