Mathieu Leclaire // Romain Reuillon
ISCPIF // GeodiverCity ERC
Naturally parallel algorithms
permit to leverage parallelism
|
|
|
| Design of experiments | Optimization | Data processing |
These methods are time consuming




![]() |
European Grid Infrastructure |
| It implements exploration algorithms | ![]() |
| It transparently delegates computational loads to massively parallel environments | ![]() |
Prototype small
Experiment large





val i1 = Prototype[Int]("i1")
val i2 = Prototype[Int]("i2")
val j = Prototype[Int]("j")
val hello = GroovyTask("hello", "j = Model.compute(i1, i2)")
hello addInput i1
hello addInput i2
hello addOutput j
hello addLib "/path/to/model.jar"
val exploration = ExplorationTask(
"exploration",
Factor(i1, 0 to 100 by 2 toDomain) x
Factor(i2, new UniformIntDistribution take 10)
)
val ex = exploration -< (hello by 10 on biomed) toExecution
ex.start
Chromosome structuring |
![]() |
![]() |
C++ 2 days per simulation 1600 simulations 8.5 years / CPU |
SimTRAP project |
![]() |
![]() |
NetLogo 5 minutes per simulation 100000 simulations 1 year / CPU |
Simpop project |
![]() |
![]() |
Scala 5 minutes per simulation 360 000 000 simulations 22 years / CPU |
The Bioemergences project |
![]() |
![]() |
C Image processing portal access daily productions 10000 jobs / day |