
Implementation Notes for the User of the kd-tree
Viability Framework

Isabelle Alvareza b Romain Reuillonc Ricardo De Aldamac

May 20, 2016

Abstract
In order to popularize the use of viability analysis we propose a framework

in which the viability sets are represented and approximated with particular kd-
trees. The computation of the viability kernel is seen a special active learning
problem. This framework aims at simplifying the declaration of the viability prob-
lem and provides useful methods to assist further use of viability sets produced by
the computation. See [1] for details. We give here some indication for the users of
the framework and describe some inside algorithms.

Viability theory, kd-tree, decision support

1 Implementation and user indication

1.1 Quick start notes and options
The algorithms are implemented in Scala and are available in a free and open-source
implementation 1. In this repository 3 main folders are exposed:

• the "kd-tree" folder contains the algorithm kd-tree active learning algorithm,

• the "viability" folder contains the viability kernel and the capture basin compu-
tation algorithm,

• the "example" folder contains a set of examples.

Using this library, the user can assemble several blocks to define a viability prob-
lem. In the first place, the user should program a dynamic. The listing 1 exposes the
code of the Consumption model (this model is described in section 1.2). To achieve
that, the user extends the "Model" trait and implements the "dynamic" method. This
method takes a state (vector) and a control (vector) and computes the resulting state
when the dynamic is applied for these given state and control. Controls can be state-
dependent.

aIrstea, UR LISC, France, isabelle.alvarez[at]irstea.fr
bUPMC Univ Paris 06, LIP6, Paris, France
cISC-PIF, France, romain.reuillon[at]iscpif.fr
1https://github.com/ISCPIF/viability

1

Listing 1: Define a dynamic
1 trait Consumer <: Model {
2
3 val integrationStep = 0.002
4 val timeStep = 0.1
5
6 def dynamic(state: Point, control: Point) = {
7 def xDot(state: Array[Double], t: Double) = state(0) - state(1)
8 def yDot(state: Array[Double], t: Double) = control(0)
9 val dynamic = Dynamic(xDot, yDot)

10 dynamic.integrate(state.toArray, integrationStep, timeStep)
11 }
12
13 }

Then the user can instantiate a so called "ViabilityKernel" computation. When
instantiating this class, some additional modules should be selected:

• a module to define the input for the algorithm: the user may either choose
"ZoneWithPointInput" meaning that the research zone for the algorithm is pro-
vided as well as a point for which the label must be true. If the user as no knowl-
edge of such a point it can use the "ZoneInput" component which automatically
looks for a point with a true label before starting the viability kernel algorithm.

• a module to define the constraints zone K: the user may opt for the "ZoneK" mod-
ule for which the constraints zone match the input zone (which is quite common)
or use the "LearnK" module for which the user provide K as an oracle function.
In this latter case, an algorithm learns K using a kd-tree before the first step of
the viability kernel algorithm.

• a module to define a sampling strategy for the test points: the "GridSampler"
samples points on a regular grid at the center of the hyper-rectangle, alternatively
the user can opt for a "RandomSampler" which sample points at random in the
tested hyper-rectangle.

Listing 2: Compute the viability kernel
1 val viability =
2 new ViabilityKernel
3 with ZoneInput
4 with ZoneK
5 with GridSampler
6 with Consumer {
7 def controls = (-0.5 to 0.5 by 0.1).map(Control(_))
8 def zone = Seq((0.0, 2.0), (0.0, 3.0))
9 def depth = 16

10 def dimension = 2
11 }
12
13 implicit lazy val rng = new Random(42)
14
15 val kernel = viability().lastWithTrace{ (tree, step) => println(step)

}

2

16 println(kernel.volume)

The library as been designed to be flexible. For instance the oracle evaluation can
be executed in parallel by adding a single line as it is shown in listing 3.

Listing 3: Compute the viability kernel
1 val viability =
2 new ViabilityKernel
3 with ...
4 with ParallelEvaluator {
5 ...
6 }

1.2 Consumption Model
This example is taken from [2].

The consumption model is proposed by [2] to describe the consumption of raw
material governed by price. The state variable x(t) represents the consumption of the
raw material, and the state variable y(t) its price. The rate of change at each time step of
the price is controlled and bounded par parameter c with u(t) ∈ [−c, c]. The constraint
set is K = [0, b]× [0, d]. The dynamics are described by the following equations:{

x(t+ dt) = x(t) + (x(t)− y(t))dt
y(t+ dt) = y(t) + u(t)dt with |u(t)| ≤ c (1)

This viability problem can be resolved analytically (see [2] for details). When dt tends
toward 0, the theoretical viability kernel is defined by:

((x, y) ∈ [0, b]× [0, d]) ∈ V iab(K)⇔{
x ≥ y − c+ c.e(−y/c)

and when y ≤ b then x ≤ y + c− c.e
y−b
c

(2)

The corresponding dynamics in dimension 1 is x′ = x − c, it is Lipschitz continuous
with constant µ = 1.

2 Algorithms
The viability algorithm used in this framework is based on the classification method
described in [3]. Sets are represented by kd-tree as in [4]. The framework is described
in [1] submitted to KBS, the preprint can be find from the author.

2.1 Learning a Set with kd-trees: The kd-LA algorithm
We consider that a function f : R ⊂ Rp 7→ {0, 1} is available, where f is the indicator
1S of a compact simply connected set S subset of the hyperrectangle R. This function

3

is called the oracle. Calls to the oracle can be very costly depending on the set S, but
they can be easily parallelized.

The main algorithms: LearnBoundary, ComputeVK,BuildStepVK, and op-
eration algorithms (dilation, erosion) can be found in the paper. Here is some additional
details.

Algorithm 1. leavesToRefine(node)
used in main Algorithm LearnBoundary

each leaf of the tree is labelled

leaves← {
0. if node is a leaf then
1. if f(node) = 1 AND node is a border

then return {node}
2. else return(∅)
3. else { (node1, node2)← node.children
4. result← ∅
5. result← result ∪ leavesToRefine(node1)
6. result← result ∪ leavesToRefine(node2)
7. result← result ∪ pairsBetweenNodes(node1, node2)
8. return result }
9. }
10. return distinct non-atomic elements of leaves

Algorithm 2. pairsBetweenNodes(node1, node2)
node1 and node2 are necessarily adjacent
0 result← {
1. if both node1 and node2 are leaves then
2. if f(node1) 6= f(node2) then
3. result← {node1, node2}
4. else if neither node1 nor node2 are leaves then
5. foreach nodei child of node1 do {
6. foreach nodej child of node2 do {
7. if nodei and nodej are adjacent then
8. result← result ∪ pairsBetweenNodes(nodei, nodej) }}
9. else do {
10. leaf ← the leaf (either node1 or node2)
11. node← the other node
12. leaves← all leaves leafi in node adjacent to leaf whith leafi.label 6= leaf.label
13. result← result ∪ {leaf} ∪ leaves
14. return result

Figure 1 shows an example of the result that can be obtained when using the learn-
ing algorithm by itself. When the spatial discretization step tends toward 0 (i.e. when
the depth of the kd-tree tends towards infinity) then the learned set converges towards
the true set (when some regularity and connectedness properties), see [4] for more
details.

4

Figure 1: Approximation of the set defined by equations 2 in section 1.2 with an accu-
racy of 1024 points / axis (depth of 20). The red points show the boundary of the set
on the 1024 points regular grid. In grey the learned kd-tree, with leaf boundary in blue.
On the right a detail of the boundary of the set.

3 References

References
[1] Isabelle Alvarez, Romain Reuillon, and Ricardo de Aldama. A kd-tree framework

for viability-based decision, to be submitted.

[2] J.-P. Aubin. Viability theory. Birkhäuser, Basel, 1991.

[3] G. Deffuant, L. Chapel, and S. Martin. Approximating viability kernels with sup-
port vector machines. IEEE T. Automat. Contr., 52(5):933–937, 2007.

[4] Jean-Baptiste Rouquier, Isabelle Alvarez, Romain Reuillon, and Pierre-Henri
Wuillemin. A kd-tree algorithm to discover the boundary of a black box hyper-
volume. Annals of Mathematics and Artificial Intelligence, pages 1–16, 2015.

5

