1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
{-|
Module : Gargantext.Core.Viz.Graph.Tools
Description : Tools to build Graph
Copyright : (c) CNRS, 2017-Present
License : AGPL + CECILL v3
Maintainer : team@gargantext.org
Stability : experimental
Portability : POSIX
-}
{-# LANGUAGE ScopedTypeVariables #-}
module Gargantext.Core.Viz.Graph.Tools
where
import Data.HashMap.Strict (HashMap)
import Data.Map (Map)
import Data.Maybe (fromMaybe)
import GHC.Float (sin, cos)
import Gargantext.API.Ngrams.Types (NgramsTerm(..))
import Gargantext.Core.Methods.Distances (Distance(..), measure)
import Gargantext.Core.Methods.Distances.Conditional (conditional)
import Gargantext.Core.Methods.Graph.BAC.Proxemy (confluence)
import Gargantext.Core.Statistics
import Gargantext.Core.Viz.Graph
import Gargantext.Core.Viz.Graph.Bridgeness (bridgeness, Partitions, ToComId(..))
import Gargantext.Core.Viz.Graph.Index (createIndices, toIndex, map2mat, mat2map, Index, MatrixShape(..))
import Gargantext.Core.Viz.Graph.Tools.IGraph (mkGraphUfromEdges, spinglass)
import Gargantext.Core.Viz.Graph.Types (ClusterNode)
import Gargantext.Core.Viz.Graph.Utils (edgesFilter)
import Gargantext.Prelude
import IGraph.Random -- (Gen(..))
import qualified Data.HashMap.Strict as HashMap
import qualified Data.List as List
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.Vector.Storable as Vec
import qualified IGraph as Igraph
import qualified IGraph.Algorithms.Layout as Layout
-------------------------------------------------------------
defaultClustering :: Map (Int, Int) Double -> IO [ClusterNode]
-- defaultClustering x = pure $ BAC.defaultClustering x
defaultClustering x = spinglass 1 x
-------------------------------------------------------------
type Threshold = Double
cooc2graph' :: Ord t => Distance
-> Double
-> Map (t, t) Int
-> Map (Index, Index) Double
cooc2graph' distance threshold myCooc
= Map.filter (> threshold)
$ mat2map
$ measure distance
$ case distance of
Conditional -> map2mat Triangle 0 tiSize
Distributional -> map2mat Square 0 tiSize
$ Map.filter (> 1) myCooc'
where
(ti, _) = createIndices myCooc
tiSize = Map.size ti
myCooc' = toIndex ti myCooc
data PartitionMethod = Louvain | Spinglass
-- TODO Bac
-- coocurrences graph computation
cooc2graphWith :: PartitionMethod
-> Distance
-> Threshold
-> HashMap (NgramsTerm, NgramsTerm) Int
-> IO Graph
cooc2graphWith Louvain = undefined
cooc2graphWith Spinglass = cooc2graphWith' (spinglass 1)
-- cooc2graphWith Bac = cooc2graphWith' (\x -> pure $ BAC.defaultClustering x)
cooc2graphWith' :: ToComId a
=> Partitions a
-> Distance
-> Threshold
-> HashMap (NgramsTerm, NgramsTerm) Int
-> IO Graph
cooc2graphWith' doPartitions distance threshold myCooc = do
let
(distanceMap, diag, ti) = doDistanceMap distance threshold myCooc
{- -- Debug
saveAsFileDebug "debug/distanceMap" distanceMap
printDebug "similarities" similarities
-}
partitions <- if (Map.size distanceMap > 0)
then doPartitions distanceMap
else panic "Text.Flow: DistanceMap is empty"
let
nodesApprox :: Int
nodesApprox = n'
where
(as, bs) = List.unzip $ Map.keys distanceMap
n' = Set.size $ Set.fromList $ as <> bs
bridgeness' = bridgeness (fromIntegral nodesApprox) partitions distanceMap
confluence' = confluence (Map.keys bridgeness') 3 True False
pure $ data2graph ti diag bridgeness' confluence' partitions
doDistanceMap :: Distance
-> Threshold
-> HashMap (NgramsTerm, NgramsTerm) Int
-> ( Map (Int,Int) Double
, Map (Index, Index) Int
, Map NgramsTerm Index
)
doDistanceMap Distributional threshold myCooc = (distanceMap, toIndex ti diag, ti)
where
-- TODO remove below
(diag, theMatrix) = Map.partitionWithKey (\(x,y) _ -> x == y)
$ Map.fromList
$ HashMap.toList myCooc
(ti, _it) = createIndices theMatrix
tiSize = Map.size ti
{-
matCooc = case distance of -- Shape of the Matrix
Conditional -> map2mat Triangle 0 tiSize
Distributional -> map2mat Square 0 tiSize
$ toIndex ti theMatrix
similarities = measure distance matCooc
-}
similarities = measure Distributional
$ map2mat Square 0 tiSize
$ toIndex ti theMatrix
links = round (let n :: Double = fromIntegral tiSize in n * (log n)^(2::Int))
distanceMap = Map.fromList
$ List.take links
$ List.reverse
$ List.sortOn snd
$ Map.toList
$ edgesFilter
$ Map.filter (> threshold)
$ mat2map similarities
doDistanceMap Conditional threshold myCooc = (distanceMap, toIndex ti myCooc', ti)
where
myCooc' = Map.fromList $ HashMap.toList myCooc
(ti, _it) = createIndices myCooc'
tiSize = Map.size ti
links = round (let n :: Double = fromIntegral tiSize in n * log n)
distanceMap = toIndex ti
$ Map.fromList
$ List.take links
$ List.sortOn snd
$ HashMap.toList
$ HashMap.filter (> threshold)
$ conditional myCooc
----------------------------------------------------------
-- | From data to Graph
type Occurrences = Int
data2graph :: ToComId a
=> Map NgramsTerm Int
-> Map (Int, Int) Occurrences
-> Map (Int, Int) Double
-> Map (Int, Int) Double
-> [a]
-> Graph
data2graph labels' occurences bridge conf partitions = Graph { _graph_nodes = nodes
, _graph_edges = edges
, _graph_metadata = Nothing
}
where
nodes = map (setCoord ForceAtlas labels bridge)
[ (n, Node { node_size = maybe 0 identity (Map.lookup (n,n) occurences)
, node_type = Terms -- or Unknown
, node_id = cs (show n)
, node_label = unNgramsTerm l
, node_x_coord = 0
, node_y_coord = 0
, node_attributes = Attributes { clust_default = fromMaybe 0
(Map.lookup n community_id_by_node_id)
}
, node_children = [] }
)
| (l, n) <- labels
, Set.member n nodesWithScores
]
edges = [ Edge { edge_source = cs (show s)
, edge_target = cs (show t)
, edge_weight = weight
, edge_confluence = maybe 0 identity $ Map.lookup (s,t) conf
, edge_id = cs (show i)
}
| (i, ((s,t), weight)) <- zip ([0..]::[Integer] ) $ Map.toList bridge
, s /= t
, weight > 0
]
community_id_by_node_id = Map.fromList
$ map nodeId2comId partitions
labels = Map.toList labels'
nodesWithScores = Set.fromList
$ List.concat
$ map (\((s,t),d) -> if d > 0 && s/=t then [s,t] else [])
$ Map.toList bridge
------------------------------------------------------------------------
data Layout = KamadaKawai | ACP | ForceAtlas
setCoord' :: (Int -> (Double, Double)) -> (Int, Node) -> Node
setCoord' f (i,n) = n { node_x_coord = x, node_y_coord = y }
where
(x,y) = f i
-- | ACP
setCoord :: Ord a => Layout -> [(a, Int)] -> Map (Int, Int) Double -> (Int, Node) -> Node
setCoord l labels m (n,node) = node { node_x_coord = x
, node_y_coord = y
}
where
(x,y) = getCoord l labels m n
getCoord :: Ord a
=> Layout
-> [(a, Int)]
-> Map (Int, Int) Double
-> Int
-> (Double, Double)
getCoord KamadaKawai _ _m _n = undefined -- layout m n
getCoord ForceAtlas _ _ n = (sin d, cos d)
where
d = fromIntegral n
getCoord ACP labels m n = to2d $ maybe (panic "Graph.Tools no coordinate") identity
$ Map.lookup n
$ pcaReduceTo (Dimension 2)
$ mapArray labels m
where
to2d :: Vec.Vector Double -> (Double, Double)
to2d v = (x',y')
where
ds = take 2 $ Vec.toList v
x' = head' "to2d" ds
y' = last' "to2d" ds
mapArray :: Ord a => [(a, Int)] -> Map (Int, Int) Double -> Map Int (Vec.Vector Double)
mapArray items m' = Map.fromList [ toVec n' ns m' | n' <- ns ]
where
ns = map snd items
toVec :: Int -> [Int] -> Map (Int,Int) Double -> (Int, Vec.Vector Double)
toVec n' ns' m' = (n', Vec.fromList $ map (\n'' -> maybe 0 identity $ Map.lookup (n',n'') m') ns')
------------------------------------------------------------------------
-- | KamadaKawai Layout
-- TODO TEST: check labels, nodeId and coordinates
layout :: Map (Int, Int) Double -> Int -> Gen -> (Double, Double)
layout m n gen = maybe (panic "") identity $ Map.lookup n $ coord
where
coord :: (Map Int (Double,Double))
coord = Map.fromList $ List.zip (Igraph.nodes g) $ (Layout.layout g p gen)
--p = Layout.defaultLGL
p = Layout.kamadaKawai
g = mkGraphUfromEdges $ map fst $ List.filter (\e -> snd e > 0) $ Map.toList m
-----------------------------------------------------------------------------
-- MISC Tools
cooc2graph'' :: Ord t => Distance
-> Double
-> Map (t, t) Int
-> Map (Index, Index) Double
cooc2graph'' distance threshold myCooc = neighbourMap
where
(ti, _) = createIndices myCooc
myCooc' = toIndex ti myCooc
matCooc = map2mat Triangle 0 (Map.size ti) $ Map.filter (> 1) myCooc'
distanceMat = measure distance matCooc
neighbourMap = filterByNeighbours threshold
$ mat2map distanceMat
-- Quentin
filterByNeighbours :: Double -> Map (Index, Index) Double -> Map (Index, Index) Double
filterByNeighbours threshold distanceMap = filteredMap
where
indexes :: [Index]
indexes = List.nub $ List.concat $ map (\(idx,idx') -> [idx,idx'] ) $ Map.keys distanceMap
filteredMap :: Map (Index, Index) Double
filteredMap = Map.fromList
$ List.concat
$ map (\idx ->
let selected = List.reverse
$ List.sortOn snd
$ Map.toList
$ Map.filter (> 0)
$ Map.filterWithKey (\(from,_) _ -> idx == from) distanceMap
in List.take (round threshold) selected
) indexes