Flow.hs 25.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
{-|
Module      : Gargantext.Database.Flow
Description : Database Flow
Copyright   : (c) CNRS, 2017-Present
License     : AGPL + CECILL v3
Maintainer  : team@gargantext.org
Stability   : experimental
Portability : POSIX

-- TODO-ACCESS:
--   check userId       CanFillUserCorpus   userCorpusId
--   check masterUserId CanFillMasterCorpus masterCorpusId

-- TODO-ACCESS: check uId CanInsertDoc pId && checkDocType nodeType
-- TODO-EVENTS: InsertedNodes
-}

{-# OPTIONS_GHC -fno-warn-orphans #-}

{-# LANGUAGE ConstrainedClassMethods #-}
{-# LANGUAGE ConstraintKinds         #-}
{-# LANGUAGE InstanceSigs            #-}
{-# LANGUAGE ScopedTypeVariables     #-}
{-# LANGUAGE TemplateHaskell         #-}
{-# LANGUAGE TypeApplications  #-}
{-# LANGUAGE TypeOperators           #-}

module Gargantext.Database.Action.Flow -- (flowDatabase, ngrams2list)
  ( DataText(..)
  , getDataText
  , getDataText_Debug
  , flowDataText
  , flow

  , flowCorpusFile
  , flowCorpus
  , flowCorpusUser
  , flowAnnuaire
  , insertMasterDocs
  , saveDocNgramsWith
  , addDocumentsToHyperCorpus

  , reIndexWith
  , docNgrams

  , getOrMkRoot
  , getOrMk_RootWithCorpus
  , TermType(..)
  , DataOrigin(..)
  , allDataOrigins

  , do_api
  , indexAllDocumentsWithPosTag
  )
    where

import Conduit
import Control.Lens hiding (elements, Indexed)
import Control.Monad (void)
import Data.Aeson.TH (deriveJSON)
import Data.Conduit.Internal (zipSources)
import Data.Either
import Data.Foldable (for_)
import Data.HashMap.Strict (HashMap)
import Data.Hashable (Hashable)
import Data.List (concat)
import Data.Map.Strict (Map, lookup)
import Data.Maybe (catMaybes)
import Data.Monoid
import Data.Proxy
import Data.Set (Set)
import Data.Swagger
import Data.Tuple.Extra (first, second)
import GHC.Generics (Generic)
import GHC.Num (fromInteger)
import Gargantext.API.Ngrams.Tools (getTermsWith)
import Gargantext.Core (Lang(..), PosTagAlgo(..), NLPServerConfig)
import Gargantext.Core (withDefaultLanguage)
import Gargantext.Core.Ext.IMTUser (readFile_Annuaire)
import Gargantext.Core.Flow.Types
import Gargantext.Core.NLP (nlpServerGet)
import Gargantext.Core.NodeStory (HasNodeStory)
import Gargantext.Core.Text
import Gargantext.Core.Text.Corpus.Parsers (parseFile, FileFormat, FileType, splitOn)
import Gargantext.Core.Text.List (buildNgramsLists)
import Gargantext.Core.Text.List.Group.WithStem ({-StopSize(..),-} GroupParams(..))
import Gargantext.Core.Text.List.Social (FlowSocialListWith(..))
import Gargantext.Core.Text.Terms
import Gargantext.Core.Text.Terms.Mono.Stem.En (stemIt)
import Gargantext.Core.Text.Terms.WithList (MatchedText, buildPatternsWith, termsInText)
import Gargantext.Core.Types (POS(NP), TermsCount)
import Gargantext.Core.Types.Individu (User(..))
import Gargantext.Core.Types.Main
import Gargantext.Core.Types.Query (Limit)
import Gargantext.Core.Utils (addTuples)
import Gargantext.Core.Utils.Prefix (unPrefix, unPrefixSwagger)
import Gargantext.Database.Action.Flow.List
import Gargantext.Database.Action.Flow.Types
import Gargantext.Database.Action.Flow.Utils (insertDocNgrams, DocumentIdWithNgrams(..))
import Gargantext.Database.Action.Metrics (updateNgramsOccurrences, updateContextScore)
import Gargantext.Database.Action.Search (searchDocInDatabase)
import Gargantext.Database.Admin.Config (userMaster, corpusMasterName)
import Gargantext.Database.Admin.Types.Hyperdata
import Gargantext.Database.Admin.Types.Node hiding (DEBUG) -- (HyperdataDocument(..), NodeType(..), NodeId, UserId, ListId, CorpusId, RootId, MasterCorpusId, MasterUserId)
import Gargantext.Database.Prelude
import Gargantext.Database.Query.Table.ContextNodeNgrams2
import Gargantext.Database.Query.Table.Ngrams
import Gargantext.Database.Query.Table.Node
import Gargantext.Database.Query.Table.Node.Document.Insert -- (insertDocuments, ReturnId(..), addUniqIdsDoc, addUniqIdsContact, ToDbData(..))
import Gargantext.Database.Query.Table.Node.Error (HasNodeError(..))
import Gargantext.Database.Query.Table.NodeContext (selectDocNodes)
import Gargantext.Database.Query.Table.NodeNgrams (listInsertDb , getCgramsId)
import Gargantext.Database.Query.Tree.Root (getOrMkRoot, getOrMk_RootWithCorpus)
import Gargantext.Database.Schema.Context
import Gargantext.Database.Schema.Node (NodePoly(..), node_id)
import Gargantext.Database.Schema.Node (node_hyperdata)
import Gargantext.Database.Types
import Gargantext.Prelude
import Gargantext.Prelude.Crypto.Hash (Hash)
import Gargantext.System.Logging
import Gargantext.Utils.Jobs (JobHandle, MonadJobStatus(..))
import System.FilePath (FilePath)
import qualified Data.Conduit      as C
import qualified Data.Conduit.List as CL
import qualified Data.Conduit.List as CList
import qualified Data.HashMap.Strict as HashMap
import qualified Data.List as List
import qualified Data.Map.Strict as Map
import qualified Data.Set            as Set
import qualified Data.Text as T
import qualified Gargantext.API.Ngrams.Types as NT
import qualified Gargantext.Core.Text.Corpus.API as API
import qualified Gargantext.Data.HashMap.Strict.Utils as HashMap
import qualified Gargantext.Database.Query.Table.Node.Document.Add  as Doc (add)
import qualified PUBMED.Types as PUBMED

------------------------------------------------------------------------
-- Imports for upgrade function
import Gargantext.Database.Query.Tree.Root (getRootId)
import Gargantext.Database.Query.Tree (findNodesId)

------------------------------------------------------------------------
-- TODO use internal with API name (could be old data)
data DataOrigin = InternalOrigin { _do_api :: API.ExternalAPIs }
                | ExternalOrigin { _do_api :: API.ExternalAPIs }
               -- TODO Web
  deriving (Generic, Eq)

makeLenses ''DataOrigin
deriveJSON (unPrefix "_do_") ''DataOrigin
instance ToSchema DataOrigin where
  declareNamedSchema = genericDeclareNamedSchema (unPrefixSwagger "_do_")

allDataOrigins :: [DataOrigin]
allDataOrigins = map InternalOrigin API.externalAPIs <> map ExternalOrigin API.externalAPIs

---------------
data DataText = DataOld ![NodeId]
              | DataNew !(Maybe Integer, ConduitT () HyperdataDocument IO ())
              --- | DataNew ![[HyperdataDocument]]

-- Show instance is not possible because of IO
printDataText :: DataText -> IO ()
printDataText (DataOld xs) = putStrLn $ show xs
printDataText (DataNew (maybeInt, conduitData)) = do
  res <- C.runConduit (conduitData .| CL.consume)
  putStrLn $ show (maybeInt, res)

-- TODO use the split parameter in config file
getDataText :: FlowCmdM env err m
            => DataOrigin
            -> TermType Lang
            -> API.RawQuery
            -> Maybe PUBMED.APIKey
            -> Maybe API.Limit
            -> m (Either API.GetCorpusError DataText)
getDataText (ExternalOrigin api) la q mPubmedAPIKey li = do
  eRes <- liftBase $ API.get api (_tt_lang la) q mPubmedAPIKey li
  pure $ DataNew <$> eRes
getDataText (InternalOrigin _) _la q _ _li = do
  (_masterUserId, _masterRootId, cId) <- getOrMk_RootWithCorpus
                                           (UserName userMaster)
                                           (Left "")
                                           (Nothing :: Maybe HyperdataCorpus)
  ids <-  map fst <$> searchDocInDatabase cId (stemIt $ API.getRawQuery q)
  pure $ Right $ DataOld ids

getDataText_Debug :: FlowCmdM env err m
            => DataOrigin
            -> TermType Lang
            -> API.RawQuery
            -> Maybe API.Limit
            -> m ()
getDataText_Debug a l q li = do
  result <- getDataText a l q Nothing li
  case result of
    Left  err -> liftBase $ putStrLn $ show err
    Right res -> liftBase $ printDataText res


-------------------------------------------------------------------------------
flowDataText :: forall env err m.
                ( FlowCmdM env err m
                , MonadJobStatus m
                )
                => User
                -> DataText
                -> TermType Lang
                -> CorpusId
                -> Maybe FlowSocialListWith
                -> JobHandle m
                -> m CorpusId
flowDataText u (DataOld ids) tt cid mfslw _ = do
  $(logLocM) DEBUG $ T.pack $ "Found " <> show (length ids) <> " old node IDs"
  (_userId, userCorpusId, listId) <- createNodes u (Right [cid]) corpusType
  _ <- Doc.add userCorpusId ids
  flowCorpusUser (_tt_lang tt) u userCorpusId listId corpusType mfslw
  where
    corpusType = (Nothing :: Maybe HyperdataCorpus)
flowDataText u (DataNew (mLen, txtC)) tt cid mfslw jobHandle = do
  $(logLocM) DEBUG $ T.pack $ "Found " <> show mLen <> " new documents to process"
  for_ (mLen <&> fromInteger) (`addMoreSteps` jobHandle)
  flowCorpus u (Right [cid]) tt mfslw (mLen, (transPipe liftBase txtC)) jobHandle

------------------------------------------------------------------------
-- TODO use proxy
flowAnnuaire :: (FlowCmdM env err m, MonadJobStatus m)
             => User
             -> Either CorpusName [CorpusId]
             -> (TermType Lang)
             -> FilePath
             -> JobHandle m
             -> m AnnuaireId
flowAnnuaire u n l filePath jobHandle = do
  -- TODO Conduit for file
  docs <- liftBase $ ((readFile_Annuaire filePath) :: IO [HyperdataContact])
  flow (Nothing :: Maybe HyperdataAnnuaire) u n l Nothing (Just $ fromIntegral $ length docs, yieldMany docs) jobHandle

------------------------------------------------------------------------
flowCorpusFile :: (FlowCmdM env err m, MonadJobStatus m)
           => User
           -> Either CorpusName [CorpusId]
           -> Limit -- Limit the number of docs (for dev purpose)
           -> TermType Lang
           -> FileType
           -> FileFormat
           -> FilePath
           -> Maybe FlowSocialListWith
           -> JobHandle m
           -> m CorpusId
flowCorpusFile u n _l la ft ff fp mfslw jobHandle = do
  eParsed <- liftBase $ parseFile ft ff fp
  case eParsed of
    Right parsed -> do
      flowCorpus u n la mfslw (Just $ fromIntegral $ length parsed, yieldMany parsed .| mapC toHyperdataDocument) jobHandle
      --let docs = splitEvery 500 $ take l parsed
      --flowCorpus u n la mfslw (yieldMany $ map (map toHyperdataDocument) docs) logStatus
    Left e       -> panic $ "Error: " <> T.pack e

------------------------------------------------------------------------
-- | TODO improve the needed type to create/update a corpus
-- (For now, Either is enough)
flowCorpus :: (FlowCmdM env err m, FlowCorpus a, MonadJobStatus m)
           => User
           -> Either CorpusName [CorpusId]
           -> TermType Lang
           -> Maybe FlowSocialListWith
           -> (Maybe Integer, ConduitT () a m ())
           -> JobHandle m
           -> m CorpusId
flowCorpus = flow (Nothing :: Maybe HyperdataCorpus)


flow :: forall env err m a c.
        ( FlowCmdM env err m
        , FlowCorpus a
        , MkCorpus c
        , MonadJobStatus m
        )
        => Maybe c
        -> User
        -> Either CorpusName [CorpusId]
        -> TermType Lang
        -> Maybe FlowSocialListWith
        -> (Maybe Integer, ConduitT () a m ())
        -> JobHandle m
        -> m CorpusId
flow c u cn la mfslw (mLength, docsC) jobHandle = do
  (_userId, userCorpusId, listId) <- createNodes u cn c
  -- TODO if public insertMasterDocs else insertUserDocs
  nlpServer <- view $ nlpServerGet (_tt_lang la)
  runConduit $ zipSources (yieldMany ([1..] :: [Int])) docsC
                 .| CList.chunksOf 100
                 .| mapM_C (addDocumentsWithProgress nlpServer userCorpusId)
                 .| sinkNull

  $(logLocM) DEBUG "Calling flowCorpusUser"
  flowCorpusUser (la ^. tt_lang) u userCorpusId listId c mfslw

  where
    addDocumentsWithProgress :: NLPServerConfig -> CorpusId -> [(Int, a)] -> m ()
    addDocumentsWithProgress nlpServer userCorpusId docsChunk = do
      $(logLocM) DEBUG $ T.pack $ "calling insertDoc, ([idx], mLength) = " <> show (fst <$> docsChunk, mLength)
      docs <- addDocumentsToHyperCorpus nlpServer c la userCorpusId (map snd docsChunk)
      markProgress (length docs) jobHandle


-- | Given a list of corpus documents and a 'NodeId' identifying the 'CorpusId', adds
-- the given documents to the corpus. Returns the Ids of the inserted documents.
addDocumentsToHyperCorpus :: ( DbCmd' env err m
                             , HasNodeError err
                             , FlowCorpus document
                             , MkCorpus corpus
                             )
                             => NLPServerConfig
                             -> Maybe corpus
                             -> TermType Lang
                             -> CorpusId
                             -> [document]
                             -> m [DocId]
addDocumentsToHyperCorpus ncs mb_hyper la corpusId docs = do
  ids <- insertMasterDocs ncs mb_hyper la docs
  void $ Doc.add corpusId ids
  pure ids

------------------------------------------------------------------------
createNodes :: ( DbCmd' env err m, HasNodeError err
               , MkCorpus c
               )
            => User
            -> Either CorpusName [CorpusId]
            -> Maybe c
            -> m (UserId, CorpusId, ListId)
createNodes user corpusName ctype = do
  -- User Flow
  (userId, _rootId, userCorpusId) <- getOrMk_RootWithCorpus user corpusName ctype
  -- NodeTexts is first
  _tId <- insertDefaultNodeIfNotExists NodeTexts userCorpusId userId
  -- printDebug "NodeTexts: " tId

  -- NodeList is second
  listId <- getOrMkList userCorpusId userId

  -- User Graph Flow
  _ <- insertDefaultNodeIfNotExists NodeGraph     userCorpusId userId
  -- _ <- insertDefaultNodeIfNotExists NodeDashboard userCorpusId userId

  pure (userId, userCorpusId, listId)


flowCorpusUser :: ( FlowCmdM env err m
                  , MkCorpus c
                  )
               => Lang
               -> User
               -> CorpusId
               -> ListId
               -> Maybe c
               -> Maybe FlowSocialListWith
               -> m CorpusId
flowCorpusUser l user userCorpusId listId ctype mfslw = do
  server <- view (nlpServerGet l)
  -- User List Flow
  (masterUserId, _masterRootId, masterCorpusId)
    <- getOrMk_RootWithCorpus (UserName userMaster) (Left "") ctype

  --let gp = (GroupParams l 2 3 (StopSize 3))
  -- Here the PosTagAlgo should be chosen according to the Lang
  _ <- case mfslw of
         (Just (NoList _)) -> do
           -- printDebug "Do not build list" mfslw
           pure ()
         _ -> do
           ngs  <- buildNgramsLists user userCorpusId masterCorpusId mfslw
                   $ GroupWithPosTag l server HashMap.empty

         -- printDebug "flowCorpusUser:ngs" ngs

           _userListId <- flowList_DbRepo listId ngs
           _mastListId <- getOrMkList masterCorpusId masterUserId
           pure ()
  -- _ <- insertOccsUpdates userCorpusId mastListId
  --_ <- mkPhylo  userCorpusId userId
  -- Annuaire Flow
  -- _ <- mkAnnuaire  rootUserId userId
  _ <- reIndexWith userCorpusId listId NgramsTerms (Set.singleton MapTerm)
  _ <- updateContextScore      userCorpusId (Just listId)
  _ <- updateNgramsOccurrences userCorpusId (Just listId)

  pure userCorpusId


insertMasterDocs :: ( DbCmd' env err m
                    , HasNodeError err
                    , FlowCorpus a
                    , MkCorpus   c
                    )
                 => NLPServerConfig
                 -> Maybe c
                 -> TermType Lang
                 -> [a]
                 -> m [DocId]
insertMasterDocs ncs c lang hs  =  do
  (masterUserId, _, masterCorpusId) <- getOrMk_RootWithCorpus (UserName userMaster) (Left corpusMasterName) c
  (ids', documentsWithId) <- insertDocs masterUserId masterCorpusId (map (toNode masterUserId Nothing) hs )
  _ <- Doc.add masterCorpusId ids'
  -- TODO
  -- create a corpus with database name (CSV or PubMed)
  -- add documents to the corpus (create node_node link)
  -- this will enable global database monitoring

  -- maps :: IO Map Ngrams (Map NgramsType (Map NodeId Int))
  mapNgramsDocs' :: HashMap ExtractedNgrams (Map NgramsType (Map NodeId (Int, TermsCount)))
                <- mapNodeIdNgrams
                <$> documentIdWithNgrams
                      (extractNgramsT ncs $ withLang lang documentsWithId)
                      documentsWithId

  lId      <- getOrMkList masterCorpusId masterUserId
  -- _ <- saveDocNgramsWith lId mapNgramsDocs'
  _ <- saveDocNgramsWith lId mapNgramsDocs'

  -- _cooc <- insertDefaultNode NodeListCooc lId masterUserId
  pure ids'

saveDocNgramsWith :: (DbCmd' env err m)
                  => ListId
                  -> HashMap ExtractedNgrams (Map NgramsType (Map NodeId (Int, TermsCount)))
                  -> m ()
saveDocNgramsWith lId mapNgramsDocs' = do
  --printDebug "[saveDocNgramsWith] mapNgramsDocs'" mapNgramsDocs'
  let mapNgramsDocsNoCount = over (traverse . traverse . traverse) fst mapNgramsDocs'
  terms2id <- insertExtractedNgrams $ HashMap.keys mapNgramsDocsNoCount

  let mapNgramsDocs = HashMap.mapKeys extracted2ngrams mapNgramsDocs'

  -- new
  mapCgramsId <- listInsertDb lId toNodeNgramsW'
               $ map (first _ngramsTerms . second Map.keys)
               $ HashMap.toList mapNgramsDocs

  --printDebug "saveDocNgramsWith" mapCgramsId
  -- insertDocNgrams
  let ngrams2insert =  catMaybes [ ContextNodeNgrams2 <$> Just nId
                                            <*> (getCgramsId mapCgramsId ngrams_type (_ngramsTerms terms''))
                                            <*> Just (fromIntegral w :: Double)
                       | (terms'', mapNgramsTypes)      <- HashMap.toList mapNgramsDocs
                       , (ngrams_type, mapNodeIdWeight) <- Map.toList mapNgramsTypes
                       , (nId, (w, _cnt))               <- Map.toList mapNodeIdWeight
                       ]
  -- printDebug "Ngrams2Insert" ngrams2insert
  _return <- insertContextNodeNgrams2 ngrams2insert

  -- to be removed
  _   <- insertDocNgrams lId $ HashMap.mapKeys (indexNgrams terms2id) mapNgramsDocs

  pure ()


------------------------------------------------------------------------
-- TODO Type NodeDocumentUnicised
insertDocs :: ( DbCmd' env err m
              -- , FlowCorpus a
              , FlowInsertDB a
              , HasNodeError err
              )
              => UserId
              -> CorpusId
              -> [a]
              -> m ([ContextId], [Indexed ContextId a])
insertDocs uId cId hs = do
  let docs = map addUniqId hs
  newIds <- insertDb uId Nothing docs
  -- printDebug "newIds" newIds
  let
    newIds' = map reId newIds
    documentsWithId = mergeData (toInserted newIds) (Map.fromList $ map viewUniqId' docs)
  _ <- Doc.add cId newIds'
  pure (newIds', documentsWithId)


------------------------------------------------------------------------
viewUniqId' :: UniqId a
            => a
            -> (Hash, a)
viewUniqId' d = maybe err (\h -> (h,d)) (view uniqId d)
      where
        err = panic "[ERROR] Database.Flow.toInsert"


toInserted :: [ReturnId]
           -> Map Hash ReturnId
toInserted =
  Map.fromList . map    (\r -> (reUniqId r, r)     )
               . filter (\r -> reInserted r == True)

mergeData :: Map Hash ReturnId
          -> Map Hash a
          -> [Indexed NodeId a]
mergeData rs = catMaybes . map toDocumentWithId . Map.toList
  where
    toDocumentWithId (sha,hpd) =
      Indexed <$> fmap reId (lookup sha rs)
              <*> Just hpd

------------------------------------------------------------------------
------------------------------------------------------------------------
------------------------------------------------------------------------
documentIdWithNgrams :: HasNodeError err
                     => (a
                     -> DBCmd err (HashMap b (Map NgramsType Int, TermsCount)))
                     -> [Indexed NodeId a]
                     -> DBCmd err [DocumentIdWithNgrams a b]
documentIdWithNgrams f = traverse toDocumentIdWithNgrams
  where
    toDocumentIdWithNgrams d = do
      e <- f $ _unIndex         d
      pure $ DocumentIdWithNgrams d e


-- | TODO check optimization
mapNodeIdNgrams :: (Ord b, Hashable b)
                => [DocumentIdWithNgrams a b]
                -> HashMap b
                       (Map NgramsType
                            (Map NodeId (Int, TermsCount))
                       )
mapNodeIdNgrams = HashMap.unionsWith (Map.unionWith (Map.unionWith addTuples)) . fmap f
  where
    -- | NOTE We are somehow multiplying 'TermsCount' here: If the
    -- same ngrams term has different ngrams types, the 'TermsCount'
    -- for it (which is the number of times the terms appears in a
    -- document) is copied over to all its types.
    f :: DocumentIdWithNgrams a b
      -> HashMap b (Map NgramsType (Map NodeId (Int, TermsCount)))
    f d = fmap (\(ngramsTypeMap, cnt) -> fmap (\i -> Map.singleton nId (i, cnt)) ngramsTypeMap) $ documentNgrams d
      where
        nId = _index $ documentWithId d


------------------------------------------------------------------------
instance ExtractNgramsT HyperdataContact
  where
    extractNgramsT _ncs l hc = HashMap.mapKeys (cleanExtractedNgrams 255) <$> extract l hc
      where
        extract :: TermType Lang -> HyperdataContact
                -> DBCmd err (HashMap ExtractedNgrams (Map NgramsType Int, TermsCount))
        extract _l hc' = do
          let authors = map text2ngrams
                      $ maybe ["Nothing"] (\a -> [a])
                      $ view (hc_who . _Just . cw_lastName) hc'

          pure $ HashMap.fromList $ [(SimpleNgrams a', (Map.singleton Authors 1, 1)) | a' <- authors ]


instance ExtractNgramsT HyperdataDocument
  where
    extractNgramsT :: NLPServerConfig
                   -> TermType Lang
                   -> HyperdataDocument
                   -> DBCmd err (HashMap ExtractedNgrams (Map NgramsType Int, TermsCount))
    extractNgramsT ncs lang hd = HashMap.mapKeys (cleanExtractedNgrams 255) <$> extractNgramsT' hd
      where
        extractNgramsT' :: HyperdataDocument
                        -> DBCmd err (HashMap ExtractedNgrams (Map NgramsType Int, TermsCount))
        extractNgramsT' doc = do
          let source    = text2ngrams
                        $ maybe "Nothing" identity
                        $ _hd_source doc

              institutes = map text2ngrams
                         $ maybe ["Nothing"] (splitOn Institutes (doc^. hd_bdd))
                         $ _hd_institutes doc

              authors    = map text2ngrams
                         $ maybe ["Nothing"] (splitOn Authors (doc^. hd_bdd))
                         $ _hd_authors doc

          termsWithCounts' <- map (\(t, cnt) -> (enrichedTerms (lang ^. tt_lang) CoreNLP NP t, cnt))
                              <$> concat
                              <$> liftBase (extractTerms ncs lang $ hasText doc)

          pure $ HashMap.fromList
               $  [(SimpleNgrams source, (Map.singleton Sources     1, 1))                    ]
               <> [(SimpleNgrams     i', (Map.singleton Institutes  1, 1)) | i' <- institutes ]
               <> [(SimpleNgrams     a', (Map.singleton Authors     1, 1)) | a' <- authors    ]
               <> [(EnrichedNgrams   t', (Map.singleton NgramsTerms 1, cnt')) | (t', cnt') <- termsWithCounts'     ]

instance (ExtractNgramsT a, HasText a) => ExtractNgramsT (Node a)
  where
    extractNgramsT ncs l (Node { _node_hyperdata = h }) = extractNgramsT ncs l h

instance HasText a => HasText (Node a)
  where
    hasText (Node { _node_hyperdata = h }) = hasText h



-- | TODO putelsewhere
-- | Upgrade function
-- Suppose all documents are English (this is the case actually)
indexAllDocumentsWithPosTag :: FlowCmdM env err m
                            => m ()
indexAllDocumentsWithPosTag = do
  rootId    <- getRootId (UserName userMaster)
  corpusIds <- findNodesId rootId [NodeCorpus]
  docs      <- List.concat <$> mapM getDocumentsWithParentId corpusIds
  _ <- mapM extractInsert (splitEvery 1000 docs)
  pure ()

extractInsert :: FlowCmdM env err m
              => [Node HyperdataDocument] -> m ()
extractInsert docs = do
  let documentsWithId = map (\doc -> Indexed (doc ^. node_id) doc) docs
  let lang = EN
  ncs <- view $ nlpServerGet lang
  mapNgramsDocs' <- mapNodeIdNgrams
                <$> documentIdWithNgrams
                    (extractNgramsT ncs $ withLang (Multi lang) documentsWithId)
                    documentsWithId
  _ <- insertExtractedNgrams $ HashMap.keys mapNgramsDocs'
  pure ()



-- | Re-index documents of a corpus with ngrams in the list
reIndexWith :: ( HasNodeStory env err m
               , FlowCmdM     env err m
               )
            => CorpusId
            -> ListId
            -> NgramsType
            -> Set ListType
            -> m ()
reIndexWith cId lId nt lts = do
  -- printDebug "(cId,lId,nt,lts)" (cId, lId, nt, lts)
  corpus_node <- getNodeWith cId (Proxy @ HyperdataCorpus)
  let corpusLang = withDefaultLanguage $ view (node_hyperdata . to _hc_lang) corpus_node

  -- Getting [NgramsTerm]
  ts <- List.concat
     <$> map (\(k,vs) -> k:vs)
     <$> HashMap.toList
     <$> getTermsWith identity [lId] nt lts

  -- Get all documents of the corpus
  docs <- selectDocNodes cId

  let
    -- fromListWith (<>)
    ngramsByDoc = map (HashMap.fromListWith (Map.unionWith (Map.unionWith (\(_a,b) (_a',b') -> (1,b+b')))))
                $ map (map (\((k, cnt), v) -> (SimpleNgrams (text2ngrams k), over (traverse . traverse) (\p -> (p, cnt)) v)))
                $ map (docNgrams corpusLang nt ts) docs

  -- Saving the indexation in database
  _ <- mapM (saveDocNgramsWith lId) ngramsByDoc
  pure ()


docNgrams :: Lang
          -> NgramsType
          -> [NT.NgramsTerm]
          -> Gargantext.Database.Admin.Types.Node.Context HyperdataDocument
          -> [((MatchedText, TermsCount),
                Map NgramsType (Map NodeId Int))]
docNgrams lang nt ts doc =
  List.zip
  (termsInText lang (buildPatternsWith lang ts)
    $ T.unlines $ catMaybes
    [ doc ^. context_hyperdata . hd_title
    , doc ^. context_hyperdata . hd_abstract
    ]
  )
  (List.cycle [Map.fromList $ [(nt, Map.singleton (doc ^. context_id) 1 )]])