Commit 27811443 authored by Alexandre Delanoë's avatar Alexandre Delanoë

cosmetics

parent e4235d09
...@@ -4,7 +4,7 @@ cabal-version: 1.12 ...@@ -4,7 +4,7 @@ cabal-version: 1.12
-- --
-- see: https://github.com/sol/hpack -- see: https://github.com/sol/hpack
-- --
-- hash: 92999c9be9048a97745703a9575dcb38cea579137bd2a893acf77c708290b84e -- hash: 0eb2bbc80a3d9343540c4d5c0c2ff6adee085a9a75364b8f5344890891c5b781
name: clustering-louvain name: clustering-louvain
version: 0.1.0.0 version: 0.1.0.0
...@@ -40,6 +40,7 @@ library ...@@ -40,6 +40,7 @@ library
Data.Graph.Clustering.Louvain.CplusPlus Data.Graph.Clustering.Louvain.CplusPlus
other-modules: other-modules:
Data.Graph.Clustering.Example Data.Graph.Clustering.Example
Data.Graph.Clustering.FLouvain
Data.Graph.Clustering.HLouvain Data.Graph.Clustering.HLouvain
Paths_clustering_louvain Paths_clustering_louvain
default-language: Haskell2010 default-language: Haskell2010
...@@ -7,14 +7,15 @@ Maintainer : alexandre.delanoe+louvain@iscpif.fr ...@@ -7,14 +7,15 @@ Maintainer : alexandre.delanoe+louvain@iscpif.fr
Stability : experimental Stability : experimental
Portability : POSIX Portability : POSIX
Clustering is not precise enought to work with (kmeans clustering is not Clustering is not precise enough to work with (kmeans clustering has not
the same methodology than Louvain clustering fo rinstance). the same methodology than Louvain clustering fo instance, not speaking
about the use of graph or not that is not the point).
Here is a new semantic to change this situation. Here is a new semantic to change this situation.
glustering vs klustering glustering vs klustering
glustering: agglomerate according to glue rules (bottom up) glustering: agglomerate according to glue rules (bottom up)
klustering: split in k parts according to klue rules (top down) klustering: split according to klue rules (top down)
-} -}
...@@ -65,8 +66,7 @@ comp g' = map sortNodes cs ...@@ -65,8 +66,7 @@ comp g' = map sortNodes cs
where where
sortNodes ns = case head $ sortOn (Down . (G.deg g)) ns of sortNodes ns = case head $ sortOn (Down . (G.deg g)) ns of
Nothing -> [] Nothing -> []
-- sort nodes by depth first to speed up the glustering Just n -> G.dfs [n] g -- dfs for glustering, bfs for klustering
Just n -> G.dfs [n] g
cs = G.components g cs = G.components g
g = G.undir g' g = G.undir g'
...@@ -78,8 +78,8 @@ comp g' = map sortNodes cs ...@@ -78,8 +78,8 @@ comp g' = map sortNodes cs
-- are glusters with score of glue to build it. -- are glusters with score of glue to build it.
data Dendogram = Gram Node data Dendogram = Gram Node
| Dendogram { gluster :: ![Dendogram] | Dendogram { dends :: ![Dendogram] -- d-ends ends can be either glusters or klusters
, score :: !Double , score :: !Double
} }
deriving (Show, Eq) deriving (Show, Eq)
...@@ -114,7 +114,7 @@ toDendoD :: DynGraph gr ...@@ -114,7 +114,7 @@ toDendoD :: DynGraph gr
=> gr n e => gr n e
-> Dendogram -> Dendogram
-> Dendogram -> Dendogram
toDendoD g d@(Gram _) = Dendogram [d] (hasScore g d) toDendoD g d@(Gram _) = Dendogram [d] (hasScore g d)
toDendoD _ d@(Dendogram _ _) = d toDendoD _ d@(Dendogram _ _) = d
-------------------------------------------------------------------------- --------------------------------------------------------------------------
...@@ -128,25 +128,33 @@ inDendo g d1@(Gram _) d2@(Gram _) = Dendogram n' (hasScore g n') ...@@ -128,25 +128,33 @@ inDendo g d1@(Gram _) d2@(Gram _) = Dendogram n' (hasScore g n')
where where
ds = inDendo g d1 (toDendoD g d2) ds = inDendo g d1 (toDendoD g d2)
ss = hasScore g ds ss = hasScore g ds
n' | hasScore g d1 + hasScore g d2 > ss = [d1,d2]
| otherwise = [ds]
inDendo g n@(Gram _) d@(Dendogram _ _) = inDendo g (toDendoD g n) d s1 = hasScore g d1
s2 = hasScore g d2
n' = [d1,d2]
{-
n' | s1 + s2 > ss = [d1,d2]
| otherwise = [ds]
-}
inDendo g d@(Dendogram _ _) n@(Gram _) = inDendo g n d inDendo g d@(Dendogram _ _) n@(Gram _) = inDendo g n d
inDendo g n@(Gram _) d@(Dendogram _ _) = inDendo g (toDendoD g n) d
inDendo g d1@(Dendogram _ _) d2@(Dendogram _ _) = Dendogram n' (hasScore g n') inDendo g d1@(Dendogram _ s1) d2@(Dendogram _ s2) = Dendogram n' (hasScore g n')
where where
ds = inDendo g d1 d2 ds = inDendo g d1 d2
ss = hasScore g ds ss = hasScore g ds
n' | hasScore g [d1, d2] > ss = [d1,d2] n' = [ds]
| otherwise = [ds] {-
n' | s1 + s2 > ss = [d1,d2]
| otherwise = [ds]
-}
------------------------------------------------------------------- -------------------------------------------------------------------
nodesD :: Dendogram -> Set Node nodesD :: Dendogram -> Set Node
nodesD (Gram n) = Set.singleton n nodesD (Gram n) = Set.singleton n
nodesD (Dendogram [] _) = Set.empty nodesD (Dendogram [] _) = Set.empty
nodesD (Dendogram s _) = Set.unions $ map nodesD s nodesD (Dendogram s _) = Set.unions $ map nodesD s
deg :: Graph gr => gr a b -> Dendogram -> Int deg :: Graph gr => gr a b -> Dendogram -> Int
deg g d = Set.size (neighbors g d) deg g d = Set.size (neighbors g d)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment