search-api.org 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
#+TITLE: Searx API request

This is related to issue
https://gitlab.iscpif.fr/gargantext/haskell-gargantext/issues/70

#+begin_src restclient
  :domain := "https://searx.frame.gargantext.org"
  POST :domain/
  Content-Type: application/x-www-form-urlencoded
  category_general=1&q=banach%20space&pageno=1&time_range=None&language=en-US&format=json
#+end_src

#+RESULTS:
#+BEGIN_SRC js
{
  "query": "banach space",
  "number_of_results": 93700.0,
  "results": [
    {
      "url": "https://en.wikipedia.org/wiki/Banach_space",
      "title": "Banach space",
      "engine": "wikipedia",
      "parsed_url": [
        "https",
        "en.wikipedia.org",
        "/wiki/Banach_space",
        "",
        "",
        ""
      ],
      "engines": [
        "wikipedia"
      ],
      "positions": [
        1
      ],
      "score": 1.0,
      "category": "general",
      "pretty_url": "https://en.wikipedia.org/wiki/Banach_space"
    },
    {
      "url": "http://mathworld.wolfram.com/BanachSpace.html",
      "title": "Banach Space -- from Wolfram MathWorld",
      "content": "10/05/2021 · A Banach space is a complete vector space with a norm . Two norms and are called equivalent if they give the same topology , which is equivalent to the existence of constants and such that. (1) and. (2) hold for all . In the finite-dimensional case, all norms are equivalent.",
      "engine": "bing",
      "parsed_url": [
        "http",
        "mathworld.wolfram.com",
        "/BanachSpace.html",
        "",
        "",
        ""
      ],
      "engines": [
        "bing"
      ],
      "positions": [
        1
      ],
      "score": 1.0,
      "category": "general",
      "pretty_url": "http://mathworld.wolfram.com/BanachSpace.html"
    },
    {
      "url": "https://en.wikipedia.org/wiki/List_of_Banach_spaces",
      "title": "List of Banach spaces - Wikipedia",
      "content": "25 lignes · Classical Banach spaces. According to Diestel (1984, Chapter VII), the classical Banach …",
      "engine": "bing",
      "parsed_url": [
        "https",
        "en.wikipedia.org",
        "/wiki/List_of_Banach_spaces",
        "",
        "",
        ""
      ],
      "engines": [
        "bing"
      ],
      "positions": [
        2
      ],
      "score": 0.5,
      "category": "general",
      "pretty_url": "https://en.wikipedia.org/wiki/List_of_Banach_spaces"
    },
    {
      "url": "https://encyclopediaofmath.org/wiki/Banach_space",
      "title": "Banach space - Encyclopedia of Mathematics",
      "content": "According to Diestel (1984, Chapter VII), the classical Banach spaces are those defined by Dunford & Schwartz (1958), which is the source for the following table. Here K denotes the field of real numbers or complex numbers and I is a closed and bounded interval [a,b]. The number p is a real number with 1 < p < ∞, and q is its Hölder conjugate (also with 1 < q < ∞), so that the next equation holds: $${\\displaystyle {\\frac {1}{q}}+{\\frac {1}{p}}=1,}$$According to Diestel (1984, Chapter VII), the classical Banach spaces are those defined by Dunford & Schwartz (1958), which is the source for the following table. Here K denotes the field of real numbers or complex numbers and I is a closed and bounded interval [a,b]. The number p is a real number with 1 < p < ∞, and q is its Hölder conjugate (also with 1 < q < ∞), so that the next equation holds: $${\\displaystyle {\\frac {1}{q}}+{\\frac {1}{p}}=1,}$$and thus $${\\displaystyle q={\\frac {p}{p-1}}.}$$The symbol Σ denotes a σ-algebra of sets, and Ξ denotes just an algebra of sets (for spaces only requiring finite additivity, such as the ba space). The symbol μ denotes a positive measure: that is, a real-valued positive set function defined on a σ-algebra which is countably additive.",
      "engine": "bing",
      "parsed_url": [
        "https",
        "encyclopediaofmath.org",
        "/wiki/Banach_space",
        "",
        "",
        ""
      ],
      "engines": [
        "bing"
      ],
      "positions": [
        3
      ],
      "score": 0.3333333333333333,
      "category": "general",
      "pretty_url": "https://encyclopediaofmath.org/wiki/Banach_space"
    },
    {
      "url": "https://www.techopedia.com/definition/17852/banach-space",
      "title": "What is Banach Space? - Definition from Techopedia",
      "content": "22/03/2017 · In functional analysis, a Banach space is a normed vector space that allows vector length to be computed. When the vector space is normed, that means that each vector other than the zero vector has a length that is greater than zero. The length and distance between two vectors can thus be computed. The vector space is complete, meaning a Cauchy sequence of vectors in a Banach space …",
      "engine": "bing",
      "parsed_url": [
        "https",
        "www.techopedia.com",
        "/definition/17852/banach-space",
        "",
        "",
        ""
      ],
      "engines": [
        "bing"
      ],
      "positions": [
        4
      ],
      "score": 0.25,
      "category": "general",
      "pretty_url": "https://www.techopedia.com/definition/17852/banach-space"
    },
    {
      "url": "https://www.sciencedirect.com/topics/mathematics/banach-spaces",
      "title": "Banach Spaces - an overview | ScienceDirect Topics",
      "content": "A Banach spaceis a complete normed linear space. Example 4.3 The spaces RN,CNare vector spaces which are also complete metric spaces with any of the norms ∥⋅∥p, hence they are Banach spaces. Similarly C(E), Lp(E) are Banach spaces with norms indicated above. □",
      "engine": "bing",
      "parsed_url": [
        "https",
        "www.sciencedirect.com",
        "/topics/mathematics/banach-spaces",
        "",
        "",
        ""
      ],
      "engines": [
        "bing"
      ],
      "positions": [
        5
      ],
      "score": 0.2,
      "category": "general",
      "pretty_url": "https://www.sciencedirect.com/topics/mathematics/banach-spaces"
    },
    {
      "url": "https://people.math.gatech.edu/~heil/handouts/banach.pdf",
      "title": "Banach Spaces - gatech.edu",
      "content": "07/09/2006 · have already said that “a Banach space is complete” if every Cauchy sequence in the space converges. The term “complete sequences” defined in this section is a completely separate definition that applies to sets of vectors in a Hilbert or Banach space (although we …",
      "engine": "bing",
      "parsed_url": [
        "https",
        "people.math.gatech.edu",
        "/~heil/handouts/banach.pdf",
        "",
        "",
        ""
      ],
      "engines": [
        "bing"
      ],
      "positions": [
        6
      ],
      "score": 0.16666666666666666,
      "category": "general",
      "pretty_url": "https://people.math.gatech.edu/~heil/handouts/banach.pdf"
    },
    {
      "url": "https://ncatlab.org/nlab/show/Banach+space",
      "title": "Banach space in nLab",
      "content": "",
      "engine": "bing",
      "parsed_url": [
        "https",
        "ncatlab.org",
        "/nlab/show/Banach+space",
        "",
        "",
        ""
      ],
      "engines": [
        "bing"
      ],
      "positions": [
        7
      ],
      "score": 0.14285714285714285,
      "category": "general",
      "pretty_url": "https://ncatlab.org/nlab/show/Banach+space"
    },
    {
      "url": "https://www.numerade.com/books/chapter/structure-of-banach-spaces/",
      "title": "Structure of Banach Spaces | Functional Analysis",
      "content": "Structure of Banach Spaces, Functional Analysis and InfiniteDimensional Geometry - Marián Fabian, Petr Habala, Petr Hájek | All the textbook answers and step-b…",
      "engine": "bing",
      "parsed_url": [
        "https",
        "www.numerade.com",
        "/books/chapter/structure-of-banach-spaces/",
        "",
        "",
        ""
      ],
      "engines": [
        "bing"
      ],
      "positions": [
        8
      ],
      "score": 0.125,
      "category": "general",
      "pretty_url": "https://www.numerade.com/books/chapter/structure-of-banach-spaces/"
    },
    {
      "url": "http://www.ma.huji.ac.il/~razk/iWeb/My_Site/Teaching_files/Banach.pdf",
      "title": "2. Banach spaces - ma.huji.ac.il",
      "content": "Definition 2.1A Banach space is a complete, normed, vector space. Comment 2.1Completeness is a metric space concept. In a normed space the metric is d(x,y)=x−y. Note that this metric satisfies the following “special\" properties: ¿ The underlying space is a vector space.",
      "engine": "bing",
      "parsed_url": [
        "http",
        "www.ma.huji.ac.il",
        "/~razk/iWeb/My_Site/Teaching_files/Banach.pdf",
        "",
        "",
        ""
      ],
      "engines": [
        "bing"
      ],
      "positions": [
        9
      ],
      "score": 0.1111111111111111,
      "category": "general",
      "pretty_url": "http://www.ma.huji.ac.il/~razk/iWeb/My_Site/Teaching_files/Banach.pdf"
    }
  ],
  "answers": [],
  "corrections": [],
  "infoboxes": [
    {
      "infobox": "Banach space",
      "id": "https://en.wikipedia.org/wiki/Banach_space",
      "content": "In mathematics, more specifically in functional analysis, a Banach space (pronounced [ˈbanax]) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.",
      "img_src": null,
      "urls": [
        {
          "title": "Wikipedia",
          "url": "https://en.wikipedia.org/wiki/Banach_space"
        },
        {
          "title": "Wikidata",
          "url": "https://www.wikidata.org/wiki/Q194397?uselang=en"
        }
      ],
      "engine": "wikidata",
      "attributes": [
        {
          "label": "Inception",
          "value": "1920"
        }
      ]
    }
  ],
  "suggestions": [],
  "unresponsive_engines": []
}
// POST https://searx.frame.gargantext.org/
// HTTP/1.1 200 OK
// Server: nginx/1.14.2
// Date: Tue, 27 Jul 2021 17:20:48 GMT
// Content-Type: application/json
// Content-Length: 8020
// Connection: keep-alive
// Server-Timing: total;dur=1826.455, total_0_go;dur=248.527, total_1_wp;dur=352.718, total_2_bi;dur=628.671, total_3_wd;dur=1822.518, load_0_go;dur=234.185, load_1_wp;dur=348.323, load_2_bi;dur=595.242, load_3_wd;dur=1778.783
// Request duration: 2.159931s
#+END_SRC