Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
haskell-gargantext
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
175
Issues
175
List
Board
Labels
Milestones
Merge Requests
10
Merge Requests
10
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
gargantext
haskell-gargantext
Commits
87ed0042
Commit
87ed0042
authored
Dec 13, 2024
by
Grégoire Locqueville
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Removed dead code in Core.Methods
parent
49e8f999
Pipeline
#7132
canceled with stages
Changes
4
Pipelines
1
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
5 additions
and
488 deletions
+5
-488
Utils.hs
src/Gargantext/Core/Methods/Matrix/Accelerate/Utils.hs
+4
-237
Conditional.hs
...ntext/Core/Methods/Similarities/Accelerate/Conditional.hs
+0
-40
Distributional.hs
...xt/Core/Methods/Similarities/Accelerate/Distributional.hs
+1
-210
Conditional.hs
src/Gargantext/Core/Methods/Similarities/Conditional.hs
+0
-1
No files found.
src/Gargantext/Core/Methods/Matrix/Accelerate/Utils.hs
View file @
87ed0042
This diff is collapsed.
Click to expand it.
src/Gargantext/Core/Methods/Similarities/Accelerate/Conditional.hs
View file @
87ed0042
...
...
@@ -16,9 +16,7 @@ See Gargantext.Core.Methods.Graph.Accelerate)
-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE ViewPatterns #-}
module
Gargantext.Core.Methods.Similarities.Accelerate.Conditional
where
...
...
@@ -29,7 +27,6 @@ import Data.Array.Accelerate
import
Data.Array.Accelerate.Interpreter
(
run
)
import
Gargantext.Core.Methods.Matrix.Accelerate.Utils
import
Gargantext.Core.Methods.Similarities.Accelerate.SpeGen
import
qualified
Gargantext.Prelude
as
P
-- * Metrics of proximity
...
...
@@ -78,40 +75,3 @@ measureConditional' m = run $ x $ map fromIntegral $ use m
r
::
Dim
r
=
dim
m
-- | To filter the nodes
-- The conditional metric P(i|j) of 2 terms @i@ and @j@, also called
-- "confidence" , is the maximum probability between @i@ and @j@ to see
-- @i@ in the same context of @j@ knowing @j@.
--
-- If N(i) (resp. N(j)) is the number of occurrences of @i@ (resp. @j@)
-- in the corpus and _[n_{ij}\] the number of its occurrences we get:
--
-- \[P_c=max(\frac{n_i}{n_{ij}},\frac{n_j}{n_{ij}} )\]
conditional'
::
Matrix
Int
->
(
Matrix
GenericityInclusion
,
Matrix
SpecificityExclusion
)
conditional'
m
=
(
run
$
ie
$
map
fromIntegral
$
use
m
,
run
$
sg
$
map
fromIntegral
$
use
m
)
where
x
::
Acc
(
Matrix
Double
)
->
Acc
(
Matrix
Double
)
x
mat
=
(
matProba
r
mat
)
xs
::
Acc
(
Matrix
Double
)
->
Acc
(
Matrix
Double
)
xs
mat
=
let
mat'
=
x
mat
in
zipWith
(
-
)
(
matSumLin
r
mat'
)
mat'
ys
::
Acc
(
Matrix
Double
)
->
Acc
(
Matrix
Double
)
ys
mat
=
let
mat'
=
x
mat
in
zipWith
(
-
)
(
matSumCol
r
mat'
)
mat'
ie
::
Acc
(
Matrix
Double
)
->
Acc
(
Matrix
Double
)
ie
mat
=
map
(
\
x'
->
x'
/
(
2
*
(
n
-
1
)))
$
zipWith
(
+
)
(
xs
mat
)
(
ys
mat
)
sg
::
Acc
(
Matrix
Double
)
->
Acc
(
Matrix
Double
)
sg
mat
=
map
(
\
x'
->
x'
/
(
2
*
(
n
-
1
)))
$
zipWith
(
-
)
(
xs
mat
)
(
ys
mat
)
r
::
Dim
r
=
dim
m
n
::
Exp
Double
n
=
P
.
fromIntegral
r
src/Gargantext/Core/Methods/Similarities/Accelerate/Distributional.hs
View file @
87ed0042
...
...
@@ -86,88 +86,19 @@ where $n_{ij}$ is the cooccurrence between term $i$ and term $j$
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE ViewPatterns #-}
module
Gargantext.Core.Methods.Similarities.Accelerate.Distributional
where
-- import qualified Data.Foldable as P (foldl1)
-- import Debug.Trace (trace)
import
Data.Array.Accelerate
as
A
-- import Data.Array.Accelerate.Interpreter (run)
import
Data.Array.Accelerate.LLVM.Native
(
run
)
-- TODO: try runQ?
import
Gargantext.Core.Methods.Matrix.Accelerate.Utils
import
qualified
Gargantext.Prelude
as
P
import
Debug.Trace
import
Prelude
(
show
,
mappend
{- , String, (<>), fromIntegral, flip -}
)
import
Prelude
(
show
,
mappend
)
import
qualified
Prelude
-- | `distributional m` returns the distributional distance between terms each
-- pair of terms as a matrix. The argument m is the matrix $[n_{ij}]_{i,j}$
-- where $n_{ij}$ is the coocccurrence between term $i$ and term $j$.
--
-- ## Basic example with Matrix of size 3:
--
-- >>> theMatrixInt 3
-- Matrix (Z :. 3 :. 3)
-- [ 7, 4, 0,
-- 4, 5, 3,
-- 0, 3, 4]
--
-- >>> distributional $ theMatrixInt 3
-- Matrix (Z :. 3 :. 3)
-- [ 1.0, 0.0, 0.9843749999999999,
-- 0.0, 1.0, 0.0,
-- 1.0, 0.0, 1.0]
--
-- ## Basic example with Matrix of size 4:
--
-- >>> theMatrixInt 4
-- Matrix (Z :. 4 :. 4)
-- [ 4, 1, 2, 1,
-- 1, 4, 0, 0,
-- 2, 0, 3, 3,
-- 1, 0, 3, 3]
--
-- >>> distributional $ theMatrixInt 4
-- Matrix (Z :. 4 :. 4)
-- [ 1.0, 0.0, 0.5714285714285715, 0.8421052631578947,
-- 0.0, 1.0, 1.0, 1.0,
-- 8.333333333333333e-2, 4.6875e-2, 1.0, 0.25,
-- 0.3333333333333333, 5.7692307692307696e-2, 1.0, 1.0]
--
distributional
::
Matrix
Int
->
Matrix
Double
distributional
m'
=
run
$
result
where
m
=
map
A
.
fromIntegral
$
use
m'
n
=
dim
m'
diag_m
=
diag
m
d_1
=
replicate
(
constant
(
Z
:.
n
:.
All
))
diag_m
d_2
=
replicate
(
constant
(
Z
:.
All
:.
n
))
diag_m
mi
=
(
.*
)
((
./
)
m
d_1
)
((
./
)
m
d_2
)
-- w = (.-) mi d_mi
-- The matrix permutations is taken care of below by directly replicating
-- the matrix mi, making the matrix w unneccessary and saving one step.
w_1
=
replicate
(
constant
(
Z
:.
All
:.
n
:.
All
))
mi
w_2
=
replicate
(
constant
(
Z
:.
n
:.
All
:.
All
))
mi
w'
=
zipWith
min
w_1
w_2
-- The matrix ii = [r_{i,j,k}]_{i,j,k} has r_(i,j,k) = 0 if k = i OR k = j
-- and r_(i,j,k) = 1 otherwise (i.e. k /= i AND k /= j).
ii
=
generate
(
constant
(
Z
:.
n
:.
n
:.
n
))
(
lift1
(
\
(
Z
:.
i
:.
j
:.
k
)
->
cond
((
&&
)
((
/=
)
k
i
)
((
/=
)
k
j
))
1
0
))
z_1
=
sum
((
.*
)
w'
ii
)
z_2
=
sum
((
.*
)
w_1
ii
)
result
=
termDivNan
z_1
z_2
logDistributional2
::
Matrix
Int
->
Matrix
Double
logDistributional2
m
=
trace
(
"logDistributional2, dim="
`
mappend
`
show
n
)
.
run
...
...
@@ -207,34 +138,6 @@ logDistributional' n m' = trace ("logDistributional'") result
mi
=
(
.*
)
(
matrixEye
n
)
-- (map (lift1 (\x -> let x' = x * to in cond (x' < 0.5) 0 (log x'))) ((./) m ss))
(
map
(
lift1
(
\
x
->
let
x'
=
x
*
to
in
cond
(
x'
<
1
)
0
(
log
x'
)))
((
./
)
m
ss
))
-- mi_nnz :: Int
-- mi_nnz = flip indexArray Z . run $
-- foldAll (+) 0 $ map (\a -> ifThenElse (abs a < 10^(-6 :: Exp Int)) 0 1) mi
-- mi_total = n*n
-- reportMat :: String -> Int -> Int -> String
-- reportMat name nnz tot = name <> ": " <> show nnz <> "nnz / " <> show tot <>
-- " | " <> show pc <> "%"
-- where pc = 100 * Prelude.fromIntegral nnz / Prelude.fromIntegral tot :: Double
-- Tensor nxnxn. Matrix mi replicated along the 2nd axis.
-- w_1 = trace (reportMat "mi" mi_nnz mi_total) $ replicate (constant (Z :. All :. n :. All)) mi
-- w1_nnz :: Int
-- w1_nnz = flip indexArray Z . run $
-- foldAll (+) 0 $ map (\a -> ifThenElse (abs a < 10^(-6 :: Exp Int)) 0 1) w_1
-- w1_total = n*n*n
-- Tensor nxnxn. Matrix mi replicated along the 1st axis.
-- w_2 = trace (reportMat "w1" w1_nnz w1_total) $ replicate (constant (Z :. n :. All :. All)) mi
-- Tensor nxnxn.
-- w' = trace "w'" $ zipWith min w_1 w_2
-- A predicate that is true when the input (i, j, k) satisfy
-- k /= i AND k /= j
-- k_diff_i_and_j = lift1 (\(Z :. i :. j :. k) -> ((&&) ((/=) k i) ((/=) k j)))
-- Matrix nxn.
sumMin
=
trace
"sumMin"
$
sumMin_go
n
mi
-- sum (condOrDefault k_diff_i_and_j 0 w')
...
...
@@ -264,112 +167,6 @@ logDistributional' n m' = trace ("logDistributional'") result
-- \[N_{m} = \sum_{i,i \neq i}^{m} \sum_{j, j \neq j}^{m} S_{ij}\]
--
logDistributional
::
Matrix
Int
->
Matrix
Double
logDistributional
m'
=
run
$
diagNull
n
$
result
where
m
=
map
fromIntegral
$
use
m'
n
=
dim
m'
-- Scalar. Sum of all elements of m.
to
=
the
$
sum
(
flatten
m
)
-- Diagonal matrix with the diagonal of m.
d_m
=
(
.*
)
m
(
matrixIdentity
n
)
-- Size n vector. s = [s_i]_i
s
=
sum
((
.-
)
m
d_m
)
-- Matrix nxn. Vector s replicated as rows.
s_1
=
replicate
(
constant
(
Z
:.
All
:.
n
))
s
-- Matrix nxn. Vector s replicated as columns.
s_2
=
replicate
(
constant
(
Z
:.
n
:.
All
))
s
-- Matrix nxn. ss = [s_i * s_j]_{i,j}. Outer product of s with itself.
ss
=
(
.*
)
s_1
s_2
-- Matrix nxn. mi = [m_{i,j}]_{i,j} where
-- m_{i,j} = 0 if n_{i,j} = 0 or i = j,
-- m_{i,j} = log(to * n_{i,j} / s_{i,j}) otherwise.
mi
=
(
.*
)
(
matrixEye
n
)
(
map
(
lift1
(
\
x
->
cond
(
x
==
0
)
0
(
log
(
x
*
to
))))
((
./
)
m
ss
))
-- Tensor nxnxn. Matrix mi replicated along the 2nd axis.
w_1
=
replicate
(
constant
(
Z
:.
All
:.
n
:.
All
))
mi
-- Tensor nxnxn. Matrix mi replicated along the 1st axis.
w_2
=
replicate
(
constant
(
Z
:.
n
:.
All
:.
All
))
mi
-- Tensor nxnxn.
w'
=
zipWith
min
w_1
w_2
-- A predicate that is true when the input (i, j, k) satisfy
-- k /= i AND k /= j
k_diff_i_and_j
=
lift1
(
\
(
Z
:.
i
:.
j
:.
k
)
->
((
&&
)
((
/=
)
k
i
)
((
/=
)
k
j
)))
-- Matrix nxn.
sumMin
=
sum
(
condOrDefault
k_diff_i_and_j
0
w'
)
-- Matrix nxn. All columns are the same.
sumM
=
sum
(
condOrDefault
k_diff_i_and_j
0
w_1
)
result
=
termDivNan
sumMin
sumM
distributional''
::
Matrix
Int
->
Matrix
Double
distributional''
m
=
-- run {- $ matMaxMini -}
run
$
diagNull
n
$
rIJ
n
$
filterWith
0
100
$
filter'
0
$
s_mi
$
map
A
.
fromIntegral
{- from Int to Double -}
$
use
m
{- push matrix in Accelerate type -}
where
_ri
::
Acc
(
Matrix
Double
)
->
Acc
(
Matrix
Double
)
_ri
mat
=
mat1
-- zipWith (/) mat1 mat2
where
mat1
=
matSumCol
n
$
zipWith
min
(
_myMin
mat
)
(
_myMin
$
filterWith
0
100
$
diagNull
n
$
transpose
mat
)
_mat2
=
total
mat
_myMin
::
Acc
(
Matrix
Double
)
->
Acc
(
Matrix
Double
)
_myMin
=
replicate
(
constant
(
Z
:.
n
:.
All
))
.
minimum
-- TODO fix NaN
-- Quali TEST: OK
s_mi
::
Acc
(
Matrix
Double
)
->
Acc
(
Matrix
Double
)
s_mi
m'
=
zipWith
(
\
x
y
->
log
(
x
/
y
))
(
diagNull
n
m'
)
$
zipWith
(
/
)
(
crossProduct
n
m'
)
(
total
m'
)
-- crossProduct n m'
total
::
Acc
(
Matrix
Double
)
->
Acc
(
Matrix
Double
)
total
=
replicate
(
constant
(
Z
:.
n
:.
n
))
.
sum
.
sum
n
::
Dim
n
=
dim
m
rIJ
::
(
Elt
a
,
Ord
a
,
P
.
Fractional
(
Exp
a
),
P
.
Num
a
)
=>
Dim
->
Acc
(
Matrix
a
)
->
Acc
(
Matrix
a
)
rIJ
n
m
=
matMaxMini
$
divide
a
b
where
a
=
sumRowMin
n
m
b
=
sumColMin
n
m
-- * For Tests (to be removed)
-- | Test perfermance with this matrix
-- TODO : add this in a benchmark folder
{-
distriTest :: Int -> Bool
distriTest n = logDistributional m == distributional m
where
m = theMatrixInt n
-}
-- * sparse utils
...
...
@@ -382,12 +179,6 @@ data Ext where
Along1
::
Int
->
Ext
Along2
::
Int
->
Ext
along1
::
Int
->
Ext
along1
=
Along1
along2
::
Int
->
Ext
along2
=
Along2
type
Delayed
sh
a
=
Exp
sh
->
Exp
a
data
ExtArr
sh
a
=
ExtArr
...
...
src/Gargantext/Core/Methods/Similarities/Conditional.hs
View file @
87ed0042
...
...
@@ -10,7 +10,6 @@ Portability : POSIX
Motivation and definition of the @Conditional@ distance.
-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE Strict #-}
module
Gargantext.Core.Methods.Similarities.Conditional
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment