Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
haskell-gargantext
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
195
Issues
195
List
Board
Labels
Milestones
Merge Requests
12
Merge Requests
12
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
gargantext
haskell-gargantext
Commits
bb989318
Commit
bb989318
authored
Aug 23, 2018
by
Alexandre Delanoë
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[DOC] distances.
parent
6b880dc3
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
33 additions
and
29 deletions
+33
-29
TextFlow.hs
src/Gargantext/TextFlow.hs
+10
-10
Matrice.hs
src/Gargantext/Viz/Graph/Distances/Matrice.hs
+23
-19
No files found.
src/Gargantext/TextFlow.hs
View file @
bb989318
...
...
@@ -29,10 +29,10 @@ import Gargantext.Core (Lang)
import
Gargantext.Prelude
import
Gargantext.Viz.Graph.Index
(
createIndices
,
toIndex
,
map2mat
,
mat2map
)
import
Gargantext.Viz.Graph.Distances.Matrice
(
condi
tional
)
import
Gargantext.Viz.Graph.Distances.Matrice
(
distribu
tional
)
import
Gargantext.Viz.Graph
(
Graph
(
..
),
data2graph
)
import
Gargantext.Text.Metrics.Count
(
cooc
)
import
Gargantext.Text.Metrics
import
Gargantext.Text.Metrics
(
filterCooc
,
FilterConfig
(
..
),
Clusters
(
..
),
SampleBins
(
..
),
DefaultValue
(
..
),
MapListSize
(
..
),
InclusionSize
(
..
))
import
Gargantext.Text.Terms
(
TermType
,
extractTerms
)
import
Gargantext.Text.Context
(
splitBy
,
SplitContext
(
Sentences
))
...
...
@@ -40,7 +40,6 @@ import Gargantext.Text.Parsers.CSV
import
Data.Graph.Clustering.Louvain.CplusPlus
(
cLouvain
)
{-
____ _ _
/ ___| __ _ _ __ __ _ __ _ _ __ | |_ _____ _| |_
...
...
@@ -93,7 +92,7 @@ textFlow' termType contexts = do
-- Filtering terms with inclusion/Exclusion and Specificity/Genericity scores
let
myCooc3
=
filterCooc
(
FilterConfig
(
MapListSize
100
)
(
InclusionSize
4
00
)
(
InclusionSize
9
00
)
(
SampleBins
10
)
(
Clusters
3
)
(
DefaultValue
0
)
...
...
@@ -109,19 +108,20 @@ textFlow' termType contexts = do
printDebug
"myCooc4"
$
M
.
size
myCooc4
let
matCooc
=
map2mat
(
0
)
(
M
.
size
ti
)
myCooc4
-- printDebug "matCooc" matCooc
printDebug
"matCooc"
matCooc
-- Matrix -> Clustering
let
distanceMat
=
conditional
matCooc
--
let distanceMat = distributional matCooc
--let distanceMat = conditional'
matCooc
let
distanceMat
=
distributional
matCooc
printDebug
"distanceMat"
$
A
.
arrayShape
distanceMat
--
printDebug "distanceMat" distanceMat
printDebug
"distanceMat"
distanceMat
--
let
distanceMap
=
mat2map
distanceMat
printDebug
"distanceMap"
$
M
.
size
distanceMap
--{-
-- let distance = fromIndex fi distanceMap
-- printDebug "distance" $ M.size distance
---}
partitions
<-
cLouvain
distanceMap
-- Building : -> Graph -> JSON
printDebug
"partitions"
$
length
partitions
...
...
src/Gargantext/Viz/Graph/Distances/Matrice.hs
View file @
bb989318
...
...
@@ -9,6 +9,7 @@ Portability : POSIX
2 main measures are actually implemented in order to compute the proximity of two terms.
- Conditional measure is an absolute measure which reflects interactions of 2 terms in the corpus.
- Distributional measure is a relative measure which depends on the selected list, it represents structural equivalence.
...
...
@@ -99,7 +100,6 @@ miniMax m = map (\x -> ifThenElse (x > miniMax') x 0) m
miniMax'
=
(
the
$
minimum
$
maximum
m
)
-- | Conditional distance (basic version)
conditional
::
Matrix
Int
->
Matrix
Double
conditional
m
=
run
(
miniMax
$
proba
(
dim
m
)
$
map
fromIntegral
$
use
m
)
...
...
@@ -134,10 +134,18 @@ conditional' m = (run $ ie $ map fromIntegral $ use m, run $ sg $ map fromIntegr
-- The distributional measure \[P_c\] of @i@ and @j@ terms is:
-- \[ S_{MI} = \frac {\sum_{k \neq i,j ; MI_{ik} >0}^{} \min(MI_{ik}, MI_{jk})}{\sum_{k \neq i,j ; MI_{ik}}^{}}
-- \]
-- \[S{MI}({i},{j}) = \log(\frac{C{ij}}{E{ij}})\] is mutual information
-- \[C{ij}\] is number of cooccurrences of @i@ and @j@ in the same context of text
-- \[E_{ij} = \frac {S_{i} S_{j}} {N}\] is the expected value of the cooccurrences
-- \[N_{i} = \sum_{i}^{} S_{i}\] is the total cooccurrences of @i@ term
--
-- Mutual information
-- \[S{MI}({i},{j}) = \log(\frac{C{ij}}{E{ij}})\]
--
-- Number of cooccurrences of @i@ and @j@ in the same context of text
-- \[C{ij}\]
--
-- The expected value of the cooccurrences
-- \[E_{ij} = \frac {S_{i} S_{j}} {N}\]
--
-- Total cooccurrences of @i@ term
-- \[N_{i} = \sum_{i}^{} S_{i}\]
distributional
::
Matrix
Int
->
Matrix
Double
distributional
m
=
run
$
miniMax
$
ri
(
map
fromIntegral
$
use
m
)
where
...
...
@@ -160,25 +168,21 @@ distributional m = run $ miniMax $ ri (map fromIntegral $ use m)
-----------------------------------------------------------------------
-----------------------------------------------------------------------
{- | Metric Specificity and genericity: select terms
{-
Metric Specificity and genericity: select terms
- let N termes and occurrences of i \[N{i}\]
let N termes
Ni : occ de i
Nij : cooc i et j
Probability to get i given j : P(i|j)=Nij/Nj
Gen(i) : 1/(N-1)*Sum(j!=i, P(i|j)) : Genericity of i
Spec(i) : 1/(N-1)*Sum(j!=i, P(j|i)) : Specificity of j
Inclusion (i) = Gen(i)+Spec(i)
Genericity score = Gen(i)- Spec(i)
- Cooccurrences of i and j \[N{ij}\]
- Probability to get i given j : \[P(i|j)=N{ij}/N{j}\]
- Genericity of i \[Gen(i) = \frac{\sum_{j \neq i,j} P(i|j)}{N-1}\]
- Specificity of j \[Spec(i) = \frac{\sum_{j \neq i,j} P(j|i)}{N-1}\]
References:
* Science mapping with asymmetrical paradigmatic proximity Jean-Philippe Cointet (CREA, TSV), David Chavalarias (CREA) (Submitted on 15 Mar 2008), Networks and Heterogeneous Media 3, 2 (2008) 267 - 276, arXiv:0803.2315 [cs.OH
]
- \[Inclusion (i) = Gen(i) + Spec(i)\)
- \[GenericityScore = Gen(i)- Spec(i)\
]
- References: Science mapping with asymmetrical paradigmatic proximity Jean-Philippe Cointet (CREA, TSV), David Chavalarias (CREA) (Submitted on 15 Mar 2008), Networks and Heterogeneous Media 3, 2 (2008) 267 - 276, arXiv:0803.2315 [cs.OH]
-}
type
InclusionExclusion
=
Double
type
SpecificityGenericity
=
Double
...
...
@@ -195,7 +199,7 @@ incExcSpeGen m = (run' inclusionExclusion m, run' specificityGenericity m)
-- | Inclusion (i) = Gen(i)+Spec(i)
inclusionExclusion
::
Acc
(
Matrix
Double
)
->
Acc
(
Vector
Double
)
inclusionExclusion
mat
=
zipWith
(
+
)
(
pV
mat
)
(
pH
mat
)
--
-- | Genericity score = Gen(i)- Spec(i)
specificityGenericity
::
Acc
(
Matrix
Double
)
->
Acc
(
Vector
Double
)
specificityGenericity
mat
=
zipWith
(
-
)
(
pV
mat
)
(
pH
mat
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment