Gargantext Haskell
About this project
Gargantext is a collaborative web platform for the exploration of sets of unstructured documents. It combines tools from natural language processing, text-mining, complex networks analysis and interactive data visualization to pave the way toward new kinds of interactions with your digital corpora.
This software is a free software, developed by the CNRS Complex Systems Institute of Paris Île-de-France (ISC-PIF) and its partners.
Installation
Disclaimer: this project is still in development, this is work in progress. Please report and improve this documentation if you encounter issues.
Build Core Code
NOTE: Default build (with optimizations) requires large amounts of RAM (16GB at least). To avoid heavy compilation times and swapping out your machine, it is recommended to stack build
with the --fast-
flag, i.e.:
stack --docker build --fast
or
stack --nix build --fast
This might be related to the broken Swagger -O2
issue.
Docker
curl -sSL https://gitlab.iscpif.fr/gargantext/haskell-gargantext/raw/dev/devops/docker/docker-install | sh
Debian
curl -sSL https://gitlab.iscpif.fr/gargantext/haskell-gargantext/raw/dev/devops/debian/install | sh
Ubuntu
curl -sSL https://gitlab.iscpif.fr/gargantext/haskell-gargantext/raw/dev/devops/ubuntu/install | sh
Add dependencies
- CoreNLP is needed (EN and FR); This dependency will not be needed soon.
./devops/install-corenlp
- Louvain C++ needed to draw the socio-semantic graphs
NOTE: This is already added in the Docker build.
git clone https://gitlab.iscpif.fr/gargantext/clustering-louvain-cplusplus.git
cd clustering-louvain-cplusplus
./install
Initialization
Docker
Run PostgreSQL first:
cd devops/docker
docker-compose up
Initialization schema should be loaded automatically (from devops/postgres/schema.sql
).
Gargantext
Fix the passwords
Change the passwords in gargantext.ini_toModify then move it:
mv gargantext.ini_toModify gargantext.ini
(.gitignore
avoids adding this file to the repository by mistake)
Run Gargantext
Users have to be created first (user1
is created as instance):
stack install
~/.local/bin/gargantext-init "gargantext.ini"
For Docker env, first create the appropriate image:
cd devops/docker
docker build -t fpco/stack-build:lts-14.27-garg .
then run:
stack --docker run gargantext-init -- gargantext.ini
Importing data
You can import some data with:
docker run --rm -it -p 9000:9000 cgenie/corenlp-garg
stack exec gargantext-import -- "corpusCsvHal" "user1" "IMT3" gargantext.ini 10000 ./1000.csv
Nix
It is also possible to build everything with Nix instead of Docker:
stack --nix build
stack --nix exec gargantext-import -- "corpusCsvHal" "user1" "IMT3" gargantext.ini 10000 ./1000.csv
stack --nix exec gargantext-server -- --ini gargantext.ini --run Prod
Use Cases
Multi-User with Graphical User Interface (Server Mode)
~/.local/bin/stack --docker exec gargantext-server -- --ini "gargantext.ini" --run Prod
Then you can log in with user1
/ 1resu
.
Command Line Mode tools
Simple cooccurrences computation and indexation from a list of Ngrams
stack --docker exec gargantext-cli -- CorpusFromGarg.csv ListFromGarg.csv Ouput.json
Analyzing the ngrams table repo
We store the repository in directory repos
in the CBOR
file format. To decode it to JSON and analyze, say, using
jq, use the following command:
cat repos/repo.cbor.v5 | stack --nix exec gargantext-cbor2json | jq .