1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/*
Constructing realizations of degree sequences and bi-degree sequences.
Copyright (C) 2018 Szabolcs Horvat <szhorvat@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
#include "igraph_constructors.h"
#include "igraph_interface.h"
#include <vector>
#include <list>
#include <algorithm>
#include <utility>
// (vertex, degree) pair
struct vd_pair {
long vertex;
igraph_integer_t degree;
vd_pair(long vertex, igraph_integer_t degree) : vertex(vertex), degree(degree) {}
};
// (indegree, outdegree)
typedef std::pair<igraph_integer_t, igraph_integer_t> bidegree;
// (vertex, bidegree) pair
struct vbd_pair {
long vertex;
bidegree degree;
vbd_pair(long vertex, bidegree degree) : vertex(vertex), degree(degree) {}
};
// Comparison function for vertex-degree pairs.
// Also used for lexicographic sorting of bi-degrees.
template<typename T> inline bool degree_greater(const T &a, const T &b) {
return a.degree > b.degree;
}
template<typename T> inline bool degree_less(const T &a, const T &b) {
return a.degree < b.degree;
}
// Generate undirected realization as edge-list.
// If largest=true, always choose the vertex with the largest remaining degree to connect up next.
// Otherwise, always choose the one with the smallest remaining degree.
static int igraph_i_havel_hakimi(const igraph_vector_t *deg, igraph_vector_t *edges, bool largest) {
long n = igraph_vector_size(deg);
long ec = 0; // number of edges added so far
std::vector<vd_pair> vertices;
vertices.reserve(n);
for (int i = 0; i < n; ++i) {
vertices.push_back(vd_pair(i, VECTOR(*deg)[i]));
}
while (! vertices.empty()) {
if (largest) {
std::stable_sort(vertices.begin(), vertices.end(), degree_less<vd_pair>);
} else {
std::stable_sort(vertices.begin(), vertices.end(), degree_greater<vd_pair>);
}
// take the next vertex to be connected up
vd_pair vd = vertices.back();
vertices.pop_back();
if (vd.degree < 0) {
IGRAPH_ERROR("Vertex degrees must be positive", IGRAPH_EINVAL);
}
if (vd.degree == 0) {
continue;
}
if (vertices.size() < size_t(vd.degree)) {
goto fail;
}
if (largest) {
for (int i = 0; i < vd.degree; ++i) {
if (--(vertices[vertices.size() - 1 - i].degree) < 0) {
goto fail;
}
VECTOR(*edges)[2 * (ec + i)] = vd.vertex;
VECTOR(*edges)[2 * (ec + i) + 1] = vertices[vertices.size() - 1 - i].vertex;
}
} else {
// this loop can only be reached if all zero-degree nodes have already been removed
// therefore decrementing remaining degrees is safe
for (int i = 0; i < vd.degree; ++i) {
vertices[i].degree--;
VECTOR(*edges)[2 * (ec + i)] = vd.vertex;
VECTOR(*edges)[2 * (ec + i) + 1] = vertices[i].vertex;
}
}
ec += vd.degree;
}
return IGRAPH_SUCCESS;
fail:
IGRAPH_ERROR("The given degree sequence is not realizable", IGRAPH_EINVAL);
}
// Choose vertices in the order of their IDs.
static int igraph_i_havel_hakimi_index(const igraph_vector_t *deg, igraph_vector_t *edges) {
long n = igraph_vector_size(deg);
long ec = 0; // number of edges added so far
typedef std::list<vd_pair> vlist;
vlist vertices;
for (int i = 0; i < n; ++i) {
vertices.push_back(vd_pair(i, VECTOR(*deg)[i]));
}
std::vector<vlist::iterator> pointers;
pointers.reserve(n);
for (vlist::iterator it = vertices.begin(); it != vertices.end(); ++it) {
pointers.push_back(it);
}
for (std::vector<vlist::iterator>::iterator pt = pointers.begin(); pt != pointers.end(); ++pt) {
vertices.sort(degree_greater<vd_pair>);
vd_pair vd = **pt;
vertices.erase(*pt);
if (vd.degree < 0) {
IGRAPH_ERROR("Vertex degrees must be positive", IGRAPH_EINVAL);
}
if (vd.degree == 0) {
continue;
}
int k;
vlist::iterator it;
for (it = vertices.begin(), k = 0;
k != vd.degree && it != vertices.end();
++it, ++k) {
if (--(it->degree) < 0) {
goto fail;
}
VECTOR(*edges)[2 * (ec + k)] = vd.vertex;
VECTOR(*edges)[2 * (ec + k) + 1] = it->vertex;
}
if (it == vertices.end() && k < vd.degree) {
goto fail;
}
ec += vd.degree;
}
return IGRAPH_SUCCESS;
fail:
IGRAPH_ERROR("The given degree sequence is not realizable", IGRAPH_EINVAL);
}
inline bool is_nonzero_outdeg(const vbd_pair &vd) {
return (vd.degree.second != 0);
}
// The below implementations of the Kleitman-Wang algorithm follow the description in https://arxiv.org/abs/0905.4913
// Realize bi-degree sequence as edge list
// If smallest=true, always choose the vertex with "smallest" bi-degree for connecting up next,
// otherwise choose the "largest" (based on lexicographic bi-degree ordering).
static int igraph_i_kleitman_wang(const igraph_vector_t *outdeg, const igraph_vector_t *indeg, igraph_vector_t *edges, bool smallest) {
long n = igraph_vector_size(indeg); // number of vertices
long ec = 0; // number of edges added so far
std::vector<vbd_pair> vertices;
vertices.reserve(n);
for (int i = 0; i < n; ++i) {
vertices.push_back(vbd_pair(i, bidegree(VECTOR(*indeg)[i], VECTOR(*outdeg)[i])));
}
while (true) {
// sort vertices by (in, out) degree pairs in decreasing order
std::stable_sort(vertices.begin(), vertices.end(), degree_greater<vbd_pair>);
// remove (0,0)-degree vertices
while (!vertices.empty() && vertices.back().degree == bidegree(0, 0)) {
vertices.pop_back();
}
// if no vertices remain, stop
if (vertices.empty()) {
break;
}
// choose a vertex the out-stubs of which will be connected
vbd_pair *vdp;
if (smallest) {
vdp = &*std::find_if(vertices.rbegin(), vertices.rend(), is_nonzero_outdeg);
} else {
vdp = &*std::find_if(vertices.begin(), vertices.end(), is_nonzero_outdeg);
}
if (vdp->degree.first < 0 || vdp->degree.second < 0) {
IGRAPH_ERROR("Vertex degrees must be positive", IGRAPH_EINVAL);
}
// are there a sufficient number of other vertices to connect to?
if (vertices.size() < vdp->degree.second - 1) {
goto fail;
}
// create the connections
int k = 0;
for (std::vector<vbd_pair>::iterator it = vertices.begin();
k < vdp->degree.second;
++it) {
if (it->vertex == vdp->vertex) {
continue; // do not create a self-loop
}
if (--(it->degree.first) < 0) {
goto fail;
}
VECTOR(*edges)[2 * (ec + k)] = vdp->vertex;
VECTOR(*edges)[2 * (ec + k) + 1] = it->vertex;
k++;
}
ec += vdp->degree.second;
vdp->degree.second = 0;
}
return IGRAPH_SUCCESS;
fail:
IGRAPH_ERROR("The given directed degree sequence is not realizable", IGRAPH_EINVAL);
}
// Choose vertices in the order of their IDs.
static int igraph_i_kleitman_wang_index(const igraph_vector_t *outdeg, const igraph_vector_t *indeg, igraph_vector_t *edges) {
long n = igraph_vector_size(indeg); // number of vertices
long ec = 0; // number of edges added so far
typedef std::list<vbd_pair> vlist;
vlist vertices;
for (int i = 0; i < n; ++i) {
vertices.push_back(vbd_pair(i, bidegree(VECTOR(*indeg)[i], VECTOR(*outdeg)[i])));
}
std::vector<vlist::iterator> pointers;
pointers.reserve(n);
for (vlist::iterator it = vertices.begin(); it != vertices.end(); ++it) {
pointers.push_back(it);
}
for (std::vector<vlist::iterator>::iterator pt = pointers.begin(); pt != pointers.end(); ++pt) {
// sort vertices by (in, out) degree pairs in decreasing order
// note: std::list::sort does a stable sort
vertices.sort(degree_greater<vbd_pair>);
// choose a vertex the out-stubs of which will be connected
vbd_pair &vd = **pt;
if (vd.degree.second == 0) {
continue;
}
if (vd.degree.first < 0 || vd.degree.second < 0) {
IGRAPH_ERROR("Vertex degrees must be positive", IGRAPH_EINVAL);
}
int k = 0;
vlist::iterator it;
for (it = vertices.begin();
k != vd.degree.second && it != vertices.end();
++it) {
if (it->vertex == vd.vertex) {
continue;
}
if (--(it->degree.first) < 0) {
goto fail;
}
VECTOR(*edges)[2 * (ec + k)] = vd.vertex;
VECTOR(*edges)[2 * (ec + k) + 1] = it->vertex;
++k;
}
if (it == vertices.end() && k < vd.degree.second) {
goto fail;
}
ec += vd.degree.second;
vd.degree.second = 0;
}
return IGRAPH_SUCCESS;
fail:
IGRAPH_ERROR("The given directed degree sequence is not realizable", IGRAPH_EINVAL);
}
static int igraph_i_realize_undirected_degree_sequence(
igraph_t *graph,
const igraph_vector_t *deg,
igraph_realize_degseq_t method) {
long node_count = igraph_vector_size(deg);
long deg_sum = long(igraph_vector_sum(deg));
if (deg_sum % 2 != 0) {
IGRAPH_ERROR("The sum of degrees must be even for an undirected graph", IGRAPH_EINVAL);
}
igraph_vector_t edges;
IGRAPH_CHECK(igraph_vector_init(&edges, deg_sum));
IGRAPH_FINALLY(igraph_vector_destroy, &edges);
switch (method) {
case IGRAPH_REALIZE_DEGSEQ_SMALLEST:
IGRAPH_CHECK(igraph_i_havel_hakimi(deg, &edges, false));
break;
case IGRAPH_REALIZE_DEGSEQ_LARGEST:
IGRAPH_CHECK(igraph_i_havel_hakimi(deg, &edges, true));
break;
case IGRAPH_REALIZE_DEGSEQ_INDEX:
IGRAPH_CHECK(igraph_i_havel_hakimi_index(deg, &edges));
break;
default:
IGRAPH_ERROR("Invalid degree sequence realization method", IGRAPH_EINVAL);
}
igraph_create(graph, &edges, igraph_integer_t(node_count), false);
igraph_vector_destroy(&edges);
IGRAPH_FINALLY_CLEAN(1);
return IGRAPH_SUCCESS;
}
static int igraph_i_realize_directed_degree_sequence(
igraph_t *graph,
const igraph_vector_t *outdeg,
const igraph_vector_t *indeg,
igraph_realize_degseq_t method) {
long node_count = igraph_vector_size(outdeg);
long edge_count = long(igraph_vector_sum(outdeg));
if (igraph_vector_size(indeg) != node_count) {
IGRAPH_ERROR("In- and out-degree sequences must have the same length", IGRAPH_EINVAL);
}
if (igraph_vector_sum(indeg) != edge_count) {
IGRAPH_ERROR("In- and out-degree sequences do not sum to the same value", IGRAPH_EINVAL);
}
igraph_vector_t edges;
IGRAPH_CHECK(igraph_vector_init(&edges, 2 * edge_count));
IGRAPH_FINALLY(igraph_vector_destroy, &edges);
switch (method) {
case IGRAPH_REALIZE_DEGSEQ_SMALLEST:
IGRAPH_CHECK(igraph_i_kleitman_wang(outdeg, indeg, &edges, true));
break;
case IGRAPH_REALIZE_DEGSEQ_LARGEST:
IGRAPH_CHECK(igraph_i_kleitman_wang(outdeg, indeg, &edges, false));
break;
case IGRAPH_REALIZE_DEGSEQ_INDEX:
IGRAPH_CHECK(igraph_i_kleitman_wang_index(outdeg, indeg, &edges));
break;
default:
IGRAPH_ERROR("Invalid bi-degree sequence realization method", IGRAPH_EINVAL);
}
igraph_create(graph, &edges, igraph_integer_t(node_count), true);
igraph_vector_destroy(&edges);
IGRAPH_FINALLY_CLEAN(1);
return IGRAPH_SUCCESS;
}
/**
* \ingroup generators
* \function igraph_realize_degree_sequence
* \brief Generates a graph with the given degree sequence
*
* This function constructs a simple graph that realizes the given degree sequence
* using the Havel-Hakimi algorithm, or the given (directed) out- and in-degree
* sequences using the related Kleitman-Wang algorithm.
*
* The algorithms work by choosing an arbitrary vertex and connecting all its stubs
* to other vertices of highest degree. In the directed case, the "highest" (in, out) degree
* pairs are determined based on lexicographic ordering.
*
* The \c method parameter controls the order in which the vertices to be connected are chosen.
*
* \param graph Pointer to an uninitialized graph object.
* \param outdeg The degree sequence for a simple undirected graph
* (if \p indeg is NULL or of length zero), or the out-degree sequence of
* a directed graph (if \p indeg is of nonzero size).
* \param indeg It is either a zero-length vector or \c NULL (if an undirected graph
* is generated), or the in-degree sequence.
* \param method The method to generate the graph. Possible values:
* \clist
* \cli IGRAPH_REALIZE_DEGSEQ_SMALLEST
* The vertex with smallest remaining degree is selected first. The result is usually
* a graph with high negative degree assortativity. In the undirected case, this method
* is guaranteed to generate a connected graph, provided that a connected realization exists.
* See http://szhorvat.net/pelican/hh-connected-graphs.html for a proof.
* In the directed case it tends to generate weakly connected graphs, but this is not
* guaranteed.
* \cli IGRAPH_REALIZE_DEGSEQ_LARGEST
* The vertex with the largest remaining degree is selected first. The result
* is usually a graph with high positive degree assortativity, and is often disconnected.
* \cli IGRAPH_REALIZE_DEGSEQ_INDEX
* The vertices are selected in order of their index (i.e. their position in the degree vector).
* Note that sorting the degree vector and using the \c INDEX method is not equivalent
* to the \c SMALLEST method above, as \c SMALLEST uses the smallest \em remaining
* degree for selecting vertices, not the smallest \em initial degree.
* \endclist
* \return Error code:
* \clist
* \cli IGRAPH_ENOMEM
* There is not enough memory to perform the operation.
* \cli IGRAPH_EINVAL
* Invalid method parameter, or invalid in- and/or out-degree vectors.
* The degree vectors should be non-negative, the length
* and sum of \p outdeg and \p indeg should match for directed graphs.
* \endclist
*
* \sa \ref igraph_is_graphical_degree_sequence()
* \ref igraph_degree_sequence_game()
* \ref igraph_k_regular_game()
* \ref igraph_rewire()
*
*/
int igraph_realize_degree_sequence(
igraph_t *graph,
const igraph_vector_t *outdeg, const igraph_vector_t *indeg,
igraph_realize_degseq_t method) {
long n = igraph_vector_size(outdeg);
if (n != igraph_integer_t(n)) { // does the vector size fit into an igraph_integer_t ?
IGRAPH_ERROR("Degree sequence vector too long", IGRAPH_EINVAL);
}
bool directed = bool(indeg) && igraph_vector_size(indeg) != 0;
try {
if (directed) {
return igraph_i_realize_directed_degree_sequence(graph, outdeg, indeg, method);
} else {
return igraph_i_realize_undirected_degree_sequence(graph, outdeg, method);
}
} catch (const std::bad_alloc &) {
IGRAPH_ERROR("Cannot realize degree sequence due to insufficient memory", IGRAPH_ENOMEM);
}
}