1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from admin.utils import PrintException
from gargantext_web.db import *
from collections import defaultdict
from operator import itemgetter
from django.db import connection, transaction
import math
from math import log,sqrt
import scipy
from gargantext_web.db import get_or_create_node
import pandas as pd
from copy import copy
import numpy as np
import scipy
import networkx as nx
from networkx.readwrite import json_graph
from rest_v1_0.api import JsonHttpResponse
from analysis.louvain import best_partition, generate_dendogram, partition_at_level
from ngram.lists import listIds
from sqlalchemy.orm import aliased
def diag_null(x):
return x - x * scipy.eye(x.shape[0])
def do_distance(cooc_id, field1=None, field2=None, isMonopartite=True, distance='conditional'):
'''
do_distance :: Int -> (Graph, Partition, {ids}, {weight})
'''
authorized = ['conditional', 'distributional', 'cosine']
if distance not in authorized:
distance = 'conditional'
matrix = defaultdict(lambda : defaultdict(float))
ids = defaultdict(lambda : defaultdict(int))
labels = dict()
weight = dict()
Cooc = aliased(NodeNgramNgram)
query = session.query(Cooc).filter(Cooc.node_id==cooc_id).all()
for cooc in query:
matrix[cooc.ngramx_id][cooc.ngramy_id] = cooc.score
matrix[cooc.ngramy_id][cooc.ngramx_id] = cooc.score
ids[cooc.ngramx_id] = (field1, cooc.ngramx_id)
ids[cooc.ngramy_id] = (field2, cooc.ngramy_id)
weight[cooc.ngramx_id] = weight.get(cooc.ngramx_id, 0) + cooc.score
weight[cooc.ngramy_id] = weight.get(cooc.ngramy_id, 0) + cooc.score
x = pd.DataFrame(matrix).fillna(0)
if distance == 'conditional':
x = x / x.sum(axis=1)
#y = y / y.sum(axis=0)
xs = x.sum(axis=1) - x
ys = x.sum(axis=0) - x
# top inclus ou exclus
n = ( xs + ys) / (2 * (x.shape[0] - 1))
# top generic or specific
m = ( xs - ys) / (2 * (x.shape[0] - 1))
n = n.sort(inplace=False)
m = m.sort(inplace=False)
nodes_included = 500 #int(round(size/20,0))
#nodes_excluded = int(round(size/10,0))
nodes_specific = 500 #int(round(size/10,0))
#nodes_generic = int(round(size/10,0))
# TODO use the included score for the node size
n_index = pd.Index.intersection(x.index, n.index[:nodes_included])
# Generic:
#m_index = pd.Index.intersection(x.index, m.index[:nodes_generic])
# Specific:
m_index = pd.Index.intersection(x.index, m.index[-nodes_specific:])
#m_index = pd.Index.intersection(x.index, n.index[:nodes_included])
x_index = pd.Index.union(n_index, m_index)
xx = x[list(x_index)].T[list(x_index)]
# Removing unconnected nodes
xxx = xx.values
threshold = min(xxx.max(axis=1))
matrix_filtered = np.where(xxx >= threshold, xxx, 0)
#matrix_filtered = matrix_filtered.resize((90,90))
G = nx.from_numpy_matrix(np.matrix(matrix_filtered))
G = nx.relabel_nodes(G, dict(enumerate([ ids[id_][1] for id_ in list(xx.columns)])))
elif distance == 'cosine':
scd = defaultdict(lambda : defaultdict(int))
for i in matrix.keys():
for j in matrix.keys():
numerator = sum(
[
matrix[i][k] * matrix[j][k]
for k in matrix.keys()
if i != j and k != i and k != j
]
)
denominator = sqrt(
sum([
matrix[i][k]
for k in matrix.keys()
if k != i and k != j #and matrix[i][k] > 0
])
*
sum([
matrix[i][k]
for k in matrix.keys()
if k != i and k != j #and matrix[i][k] > 0
])
)
try:
scd[i][j] = numerator / denominator
except Exception as error:
scd[i][j] = 0
minmax = min([ max([ scd[i][j] for i in scd.keys()]) for j in scd.keys()])
G = nx.DiGraph()
G.add_edges_from(
[
(i, j, {'weight': scd[i][j]})
for i in scd.keys() for j in scd.keys()
if i != j and scd[i][j] > minmax and scd[i][j] > scd[j][i]
]
)
elif distance == 'distributional':
mi = defaultdict(lambda : defaultdict(int))
total_cooc = x.sum().sum()
for i in matrix.keys():
si = sum([matrix[i][j] for j in matrix[i].keys() if i != j])
for j in matrix[i].keys():
sj = sum([matrix[j][k] for k in matrix[j].keys() if j != k])
if i!=j :
mi[i][j] = log( matrix[i][j] / ((si * sj) / total_cooc) )
r = defaultdict(lambda : defaultdict(int))
for i in matrix.keys():
for j in matrix.keys():
sumMin = sum(
[
min(mi[i][k], mi[j][k])
for k in matrix.keys()
if i != j and k != i and k != j and mi[i][k] > 0
]
)
sumMi = sum(
[
mi[i][k]
for k in matrix.keys()
if k != i and k != j and mi[i][k] > 0
]
)
try:
r[i][j] = sumMin / sumMi
except Exception as error:
r[i][j] = 0
# Need to filter the weak links, automatic threshold here
minmax = min([ max([ r[i][j] for i in r.keys()]) for j in r.keys()])
G = nx.DiGraph()
G.add_edges_from(
[
(i, j, {'weight': r[i][j]})
for i in r.keys() for j in r.keys()
if i != j and r[i][j] > minmax and r[i][j] > r[j][i]
]
)
# degree_max = max([(n, d) for n,d in G.degree().items()], key=itemgetter(1))[1]
# nodes_to_remove = [n for (n,d) in G.degree().items() if d <= round(degree_max/2)]
# G.remove_nodes_from(nodes_to_remove)
# Removing too connected nodes (find automatic way to do it)
#edges_to_remove = [ e for e in G.edges_iter() if
# nodes_to_remove = [n for n in degree if degree[n] <= 1]
# G.remove_nodes_from(nodes_to_remove)
def getWeight(item):
return item[1]
#
# node_degree = sorted(G.degree().items(), key=getWeight, reverse=True)
# #print(node_degree)
# nodes_too_connected = [n[0] for n in node_degree[0:(round(len(node_degree)/5))]]
#
# for n in nodes_too_connected:
# n_edges = list()
# for v in nx.neighbors(G,n):
# #print((n, v), G[n][v]['weight'], ":", (v,n), G[v][n]['weight'])
# n_edges.append(((n, v), G[n][v]['weight']))
#
# n_edges_sorted = sorted(n_edges, key=getWeight, reverse=True)
# #G.remove_edges_from([ e[0] for e in n_edges_sorted[round(len(n_edges_sorted)/2):]])
# #G.remove_edges_from([ e[0] for e in n_edges_sorted[(round(len(nx.neighbors(G,n))/3)):]])
# G.remove_edges_from([ e[0] for e in n_edges_sorted[10:]])
G.remove_nodes_from(nx.isolates(G))
partition = best_partition(G.to_undirected())
return(G,partition,ids,weight)