louvain.py 17.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
#!/usr/bin/python
# -*- coding: utf-8 -*-

"""
This module implements community detection.
"""
__all__ = ["partition_at_level", "modularity", "best_partition", "generate_dendogram", "induced_graph"]
__author__ = """Thomas Aynaud (thomas.aynaud@lip6.fr)"""
#    Copyright (C) 2009 by
#    Thomas Aynaud <thomas.aynaud@lip6.fr>
#    All rights reserved.
#    BSD license.
#    Adapted to python 3 by anoe

__PASS_MAX = -1
__MIN = 0.0000001

import networkx as nx
import sys
import types
import array


def partition_at_level(dendogram, level) :
    """Return the partition of the nodes at the given level

    A dendogram is a tree and each level is a partition of the graph nodes.
    Level 0 is the first partition, which contains the smallest communities, and the best is len(dendogram) - 1.
    The higher the level is, the bigger are the communities

    Parameters
    ----------
    dendogram : list of dict
       a list of partitions, ie dictionnaries where keys of the i+1 are the values of the i.
    level : int
       the level which belongs to [0..len(dendogram)-1]

    Returns
    -------
    partition : dictionnary
       A dictionary where keys are the nodes and the values are the set it belongs to

    Raises
    ------
    KeyError
       If the dendogram is not well formed or the level is too high

    See Also
    --------
    best_partition which directly combines partition_at_level and generate_dendogram to obtain the partition of highest modularity

    Examples
    --------
    >>> G=nx.erdos_renyi_graph(100, 0.01)
    >>> dendo = generate_dendogram(G)
    >>> for level in range(len(dendo) - 1) :
    >>>     print "partition at level", level, "is", partition_at_level(dendo, level)
    """
    partition = dendogram[0].copy()
    for index in range(1, level + 1) :
        for node, community in tuple(partition.items()) :
            partition[node] = dendogram[index][community]
    return partition


def modularity(partition, graph) :
    """Compute the modularity of a partition of a graph

    Parameters
    ----------
    partition : dict
       the partition of the nodes, i.e a dictionary where keys are their nodes and values the communities
    graph : networkx.Graph
       the networkx graph which is decomposed

    Returns
    -------
    modularity : float
       The modularity

    Raises
    ------
    KeyError
       If the partition is not a partition of all graph nodes
    ValueError
        If the graph has no link
    TypeError
        If graph is not a networkx.Graph

    References
    ----------
    .. 1. Newman, M.E.J. & Girvan, M. Finding and evaluating community structure in networks. Physical Review E 69, 26113(2004).

    Examples
    --------
    >>> G=nx.erdos_renyi_graph(100, 0.01)
    >>> part = best_partition(G)
    >>> modularity(part, G)
    """
    if type(graph) != nx.Graph :
        raise TypeError("Bad graph type, use only non directed graph")

    inc = dict([])
    deg = dict([])
    links = graph.size(weight='weight')
    if links == 0 :
        raise ValueError("A graph without link has an undefined modularity")
    
    for node in graph :
        com = partition[node]
        deg[com] = deg.get(com, 0.) + graph.degree(node, weight = 'weight')
        for neighbor, datas in tuple(graph[node].items()) :
            weight = datas.get("weight", 1)
            if partition[neighbor] == com :
                if neighbor == node :
                    inc[com] = inc.get(com, 0.) + float(weight)
                else :
                    inc[com] = inc.get(com, 0.) + float(weight) / 2.

    res = 0.
    for com in set(partition.values()) :
        res += (inc.get(com, 0.) / links) - (deg.get(com, 0.) / (2.*links))**2
    return res


def best_partition(graph, partition = None) :
    """Compute the partition of the graph nodes which maximises the modularity
    (or try..) using the Louvain heuristices

    This is the partition of highest modularity, i.e. the highest partition of the dendogram
    generated by the Louvain algorithm.
    
    Parameters
    ----------
    graph : networkx.Graph
       the networkx graph which is decomposed
    partition : dict, optionnal
       the algorithm will start using this partition of the nodes. It's a dictionary where keys are their nodes and values the communities

    Returns
    -------
    partition : dictionnary
       The partition, with communities numbered from 0 to number of communities

    Raises
    ------
    NetworkXError
       If the graph is not Eulerian.

    See Also
    --------
    generate_dendogram to obtain all the decompositions levels

    Notes
    -----
    Uses Louvain algorithm

    References
    ----------
    .. 1. Blondel, V.D. et al. Fast unfolding of communities in large networks. J. Stat. Mech 10008, 1-12(2008).

    Examples
    --------
    >>>  #Basic usage
    >>> G=nx.erdos_renyi_graph(100, 0.01)
    >>> part = best_partition(G)
    
    >>> #other example to display a graph with its community :
    >>> #better with karate_graph() as defined in networkx examples
    >>> #erdos renyi don't have true community structure
    >>> G = nx.erdos_renyi_graph(30, 0.05)
    >>> #first compute the best partition
    >>> partition = G.best_partition(G)
    >>>  #drawing
    >>> size = float(len(set(partition.values())))
    >>> pos = nx.spring_layout(G)
    >>> count = 0.
    >>> for com in set(partition.values()) :
    >>>     count = count + 1.
    >>>     list_nodes = [nodes for nodes in partition.keys()
    >>>                                 if partition[nodes] == com]
    >>>     nx.draw_networkx_nodes(G, pos, list_nodes, node_size = 20,
                                    node_color = str(count / size))
    >>> nx.draw_networkx_edges(G,pos, alpha=0.5)
    >>> plt.show()
    """
    dendo = generate_dendogram(graph, partition)
    return partition_at_level(dendo, len(dendo) - 1 )


def generate_dendogram(graph, part_init = None) :
    """Find communities in the graph and return the associated dendogram

    A dendogram is a tree and each level is a partition of the graph nodes.  Level 0 is the first partition, which contains the smallest communities, and the best is len(dendogram) - 1. The higher the level is, the bigger are the communities


    Parameters
    ----------
    graph : networkx.Graph
        the networkx graph which will be decomposed
    part_init : dict, optionnal
        the algorithm will start using this partition of the nodes. It's a dictionary where keys are their nodes and values the communities

    Returns
    -------
    dendogram : list of dictionaries
        a list of partitions, ie dictionnaries where keys of the i+1 are the values of the i. and where keys of the first are the nodes of graph
    
    Raises
    ------
    TypeError
        If the graph is not a networkx.Graph

    See Also
    --------
    best_partition

    Notes
    -----
    Uses Louvain algorithm

    References
    ----------
    .. 1. Blondel, V.D. et al. Fast unfolding of communities in large networks. J. Stat. Mech 10008, 1-12(2008).

    Examples
    --------
    >>> G=nx.erdos_renyi_graph(100, 0.01)
    >>> dendo = generate_dendogram(G)
    >>> for level in range(len(dendo) - 1) :
    >>>     print "partition at level", level, "is", partition_at_level(dendo, level)
    """
    if type(graph) != nx.Graph :
        raise TypeError("Bad graph type, use only non directed graph")

    #special case, when there is no link 
    #the best partition is everyone in its community
    if graph.number_of_edges() == 0 :
        part = dict([])
        for node in graph.nodes() :
            part[node] = node
        return part
        
    current_graph = graph.copy()
    status = Status()
    status.init(current_graph, part_init)
    mod = __modularity(status)
    status_list = list()
    __one_level(current_graph, status)
    new_mod = __modularity(status)
    partition = __renumber(status.node2com)
    status_list.append(partition)
    mod = new_mod
    current_graph = induced_graph(partition, current_graph)
    status.init(current_graph)
    
    while True :
        __one_level(current_graph, status)
        new_mod = __modularity(status)
        if new_mod - mod < __MIN :
            break
        partition = __renumber(status.node2com)
        status_list.append(partition)
        mod = new_mod
        current_graph = induced_graph(partition, current_graph)
        status.init(current_graph)
    return status_list[:]


def induced_graph(partition, graph) :
    """Produce the graph where nodes are the communities

    there is a link of weight w between communities if the sum of the weights of the links between their elements is w

    Parameters
    ----------
    partition : dict
       a dictionary where keys are graph nodes and  values the part the node belongs to
    graph : networkx.Graph
        the initial graph

    Returns
    -------
    g : networkx.Graph
       a networkx graph where nodes are the parts

    Examples
    --------
    >>> n = 5
    >>> g = nx.complete_graph(2*n)
    >>> part = dict([])
    >>> for node in g.nodes() :
    >>>     part[node] = node % 2
    >>> ind = induced_graph(part, g)
    >>> goal = nx.Graph()
    >>> goal.add_weighted_edges_from([(0,1,n*n),(0,0,n*(n-1)/2), (1, 1, n*(n-1)/2)])
    >>> nx.is_isomorphic(int, goal)
    True
    """
    ret = nx.Graph()
    ret.add_nodes_from(partition.values())
    
    for node1, node2, datas in graph.edges_iter(data = True) :
        weight = datas.get("weight", 1)
        com1 = partition[node1]
        com2 = partition[node2]
        w_prec = ret.get_edge_data(com1, com2, {"weight":0}).get("weight", 1)
        ret.add_edge(com1, com2, weight = w_prec + weight)
        
    return ret


def __renumber(dictionary) :
    """Renumber the values of the dictionary from 0 to n
    """
    count = 0
    ret = dictionary.copy()
    new_values = dict([])
    
    for key in dictionary.keys() :
        value = dictionary[key]
        new_value = new_values.get(value, -1)
        if new_value == -1 :
            new_values[value] = count
            new_value = count
            count = count + 1
        ret[key] = new_value
        
    return ret


def __load_binary(data) :
    """Load binary graph as used by the cpp implementation of this algorithm
    """
    if type(data) == types.StringType :
        data = open(data, "rb")
        
    reader = array.array("I")
    reader.fromfile(data, 1)
    num_nodes = reader.pop()
    reader = array.array("I")
    reader.fromfile(data, num_nodes)
    cum_deg = reader.tolist()
    num_links = reader.pop()
    reader = array.array("I")
    reader.fromfile(data, num_links)
    links = reader.tolist()
    graph = nx.Graph()
    graph.add_nodes_from(range(num_nodes))
    prec_deg = 0
    
    for index in range(num_nodes) :
        last_deg = cum_deg[index]
        neighbors = links[prec_deg:last_deg]
        graph.add_edges_from([(index, int(neigh)) for neigh in neighbors])
        prec_deg = last_deg
        
    return graph


def __one_level(graph, status) :
    """Compute one level of communities
    """
    modif = True
    nb_pass_done = 0
    cur_mod = __modularity(status)
    new_mod = cur_mod
    
    while modif  and nb_pass_done != __PASS_MAX :
        cur_mod = new_mod
        modif = False
        nb_pass_done += 1
        
        for node in graph.nodes() :
            com_node = status.node2com[node]
            degc_totw = status.gdegrees.get(node, 0.) / (status.total_weight*2.)
            neigh_communities = __neighcom(node, graph, status)
            __remove(node, com_node,
                    neigh_communities.get(com_node, 0.), status)
            best_com = com_node
            best_increase = 0
            for com, dnc in tuple(neigh_communities.items()) :
                incr =  dnc  - status.degrees.get(com, 0.) * degc_totw
                if incr > best_increase :
                    best_increase = incr
                    best_com = com                    
            __insert(node, best_com,
                    neigh_communities.get(best_com, 0.), status)
            if best_com != com_node :
                modif = True                
        new_mod = __modularity(status)
        if new_mod - cur_mod < __MIN :
            break


class Status :
    """
    To handle several data in one struct.

    Could be replaced by named tuple, but don't want to depend on python 2.6
    """
    node2com = {}
    total_weight = 0
    internals = {}
    degrees = {}
    gdegrees = {}
    
    def __init__(self) :
        self.node2com = dict([])
        self.total_weight = 0
        self.degrees = dict([])
        self.gdegrees = dict([])
        self.internals = dict([])
        self.loops = dict([])
        
    def __str__(self) :
        return ("node2com : " + str(self.node2com) + " degrees : "
            + str(self.degrees) + " internals : " + str(self.internals)
            + " total_weight : " + str(self.total_weight))

    def copy(self) :
        """Perform a deep copy of status"""
        new_status = Status()
        new_status.node2com = self.node2com.copy()
        new_status.internals = self.internals.copy()
        new_status.degrees = self.degrees.copy()
        new_status.gdegrees = self.gdegrees.copy()
        new_status.total_weight = self.total_weight

    def init(self, graph, part = None) :
        """Initialize the status of a graph with every node in one community"""
        count = 0
        self.node2com = dict([])
        self.total_weight = 0
        self.degrees = dict([])
        self.gdegrees = dict([])
        self.internals = dict([])
        try: 
            self.total_weight = graph.size(weighted = True)
        except: 
            self.total_weight = graph.size(weight='weight')
        if part == None :
            for node in graph.nodes() :
                self.node2com[node] = count
                try:
                    deg = float(graph.degree(node, weighted = True))
                except:
                    deg = float(graph.degree(node, weight = 'weight'))
                if deg < 0 :
                    raise ValueError("Bad graph type, use positive weights")
                self.degrees[count] = deg
                self.gdegrees[node] = deg
                self.loops[node] = float(graph.get_edge_data(node, node,
                                                 {"weight":0}).get("weight", 1))
                self.internals[count] = self.loops[node]
                count = count + 1
        else :
            for node in graph.nodes() :
                com = part[node]
                self.node2com[node] = com
                deg = float(graph.degree(node, weigh = 'weight'))
                self.degrees[com] = self.degrees.get(com, 0) + deg
                self.gdegrees[node] = deg
                inc = 0.
                for neighbor, datas in tuple(graph[node].items()) :
                    weight = datas.get("weight", 1)
                    if weight <= 0 :
                        raise ValueError("Bad graph type, use positive weights")
                    if part[neighbor] == com :
                        if neighbor == node :
                            inc += float(weight)
                        else :
                            inc += float(weight) / 2.
                self.internals[com] = self.internals.get(com, 0) + inc


def __neighcom(node, graph, status) :
    """
    Compute the communities in the neighborood of node in the graph given
    with the decomposition node2com
    """
    weights = {}
    for neighbor, datas in tuple(graph[node].items()):
        if neighbor != node :
            weight = datas.get("weight", 1)
            neighborcom = status.node2com[neighbor]
            weights[neighborcom] = weights.get(neighborcom, 0) + weight
            
    return weights


def __remove(node, com, weight, status) :
    """ Remove node from community com and modify status"""
    status.degrees[com] = ( status.degrees.get(com, 0.)
                                    - status.gdegrees.get(node, 0.) )
    status.internals[com] = float( status.internals.get(com, 0.) -
                weight - status.loops.get(node, 0.) )
    status.node2com[node] = -1
    

def __insert(node, com, weight, status) :
    """ Insert node into community and modify status"""
    status.node2com[node] = com
    status.degrees[com] = ( status.degrees.get(com, 0.) +
                                status.gdegrees.get(node, 0.) )
    status.internals[com] = float( status.internals.get(com, 0.) +
                        weight + status.loops.get(node, 0.) )


def __modularity(status) :
    """
    Compute the modularity of the partition of the graph faslty using status precomputed
    """
    links = float(status.total_weight)
    result = 0.
    for community in set(status.node2com.values()) :
        in_degree = status.internals.get(community, 0.)
        degree = status.degrees.get(community, 0.)
        if links > 0 :
            result = result + in_degree / links - ((degree / (2.*links))**2)
    return result


def __main() :
    """Main function to mimic C++ version behavior"""
    try :
        filename = sys.argv[1]
        graphfile = __load_binary(filename)
        partition = best_partition(graphfile)
        print >> sys.stderr, str(modularity(partition, graphfile))
        for elem, part in tuple(partition.items()) :
            print(str(elem) + " " + str(part))
    except (IndexError, IOError):
        print("Usage : ./community filename")
        print("find the communities in graph filename and display the dendogram")
        print("Parameters:")
        print("filename is a binary file as generated by the ")
        print("convert utility distributed with the C implementation")


if __name__ == "__main__" :
    __main()