1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from gargantext.util.files import download
import sys
import time
import threading
from queue import Queue
from lxml import etree
if sys.version_info >= (3, 0):
from urllib.request import urlopen
else:
from urllib import urlopen
class Scraper :
def __init__(self):
self.queue_size = 8
self.q = Queue()
self.firstResults = []
self.lock = threading.Lock() # lock to serialize console output
self.pubMedEutilsURL = 'http://www.ncbi.nlm.nih.gov/entrez/eutils'
self.pubMedDB = 'Pubmed'
self.reportType = 'medline'
# Return the globalResults!:
# - count =
# - queryKey =
# - webEnv =
def medlineEsearch(self , query):
# print ("MedlineFetcher::medlineEsearch :")
"Get number of results for query 'query' in variable 'count'"
"Get also 'queryKey' and 'webEnv', which are used by function 'medlineEfetch'"
# print(query)
origQuery = query
query = query.replace(' ', '%20')
eSearch = '%s/esearch.fcgi?db=%s&retmax=1&usehistory=y&term=%s' \
% ( self.pubMedEutilsURL, self.pubMedDB, query )
try:
eSearchResult = urlopen(eSearch)
data = eSearchResult.read()
root = etree.XML(data)
findcount = etree.XPath("/eSearchResult/Count/text()")
count = findcount(root)[0]
findquerykey = etree.XPath("/eSearchResult/QueryKey/text()")
queryKey = findquerykey(root)[0]
findwebenv = etree.XPath("/eSearchResult/WebEnv/text()")
webEnv = findwebenv(root)[0]
except Exception as Error:
print(Error)
count = 0
queryKey = False
webEnv = False
origQuery = False
values = { "query" : origQuery
, "count" : int(count)
, "queryKey" : queryKey
, "webEnv" : webEnv
}
return values
# RETMAX:
# Total number of UIDs from the retrieved set to be shown in the XML output (default=20)
# maximum of 100,000 records
def medlineEfetchRAW( self , fullquery):
query = fullquery [ "string" ]
retmax = fullquery [ "retmax" ]
count = fullquery [ "count" ]
queryKey = fullquery [ "queryKey"]
webEnv = fullquery [ "webEnv" ]
"Fetch medline result for query 'query', saving results to file every 'retmax' articles"
queryNoSpace = query.replace(' ', '') # No space in directory and file names, avoids stupid errors
# print ("LOG::TIME: ",'medlineEfetchRAW :Query "' , query , '"\t:\t' , count , ' results')
retstart = 0
eFetch = '%s/efetch.fcgi?email=youremail@example.org&rettype=%s&retmode=xml&retstart=%s&retmax=%s&db=%s&query_key=%s&WebEnv=%s' %(self.pubMedEutilsURL, self.reportType, retstart, retmax, self.pubMedDB, queryKey, webEnv)
return eFetch
# generic!
def download(self, url):
print(url)
filename = download(url)
with self.lock:
print(threading.current_thread().name, filename+" OK")
return filename
# generic!
def do_work(self,item):
# time.sleep(1) # pretend to do some lengthy work.
returnvalue = self.medlineEsearch(item)
with self.lock:
# print(threading.current_thread().name, item)
return returnvalue
# The worker thread pulls an item from the queue and processes it
def worker(self):
while True:
item = self.q.get()
self.firstResults.append(self.do_work(item))
self.q.task_done()
def worker2(self):
while True:
item = self.q.get()
results = []
try:
result = self.download(item)
except Exception as error :
print(error)
result = False
self.firstResults.append(result)
self.q.task_done()
def chunks(self , l , n):
print("chunks:")
for i in range(0, len(l), n):
yield l[i:i+n]
# GLOBALLIMIT:
# I will retrieve this exact amount of publications.
# The publications per year i'll retrieve per year will be :
# (k/N)*GlobalLimit
# \_ this is used as RETMAX
# - k : Number of publications of x year (according to pubmed)
# - N : Sum of every k belonging to {X} (total number of pubs according to pubmed)
# - GlobalLimit : Number of publications i want.
def serialFetcher(self , yearsNumber , query, globalLimit):
# Create the queue and thread pool.
for i in range(self.queue_size):
t = threading.Thread(target=self.worker)
t.daemon = True # thread dies when main thread (only non-daemon thread) exits.
t.start()
start = time.perf_counter()
N = 0
# print ("MedlineFetcher::serialFetcher :")
thequeries = []
globalresults = []
for i in range(yearsNumber):
year = str(2015 - i)
# print ('YEAR ' + year)
# print ('---------\n')
pubmedquery = str(year) + '[dp] '+query
self.q.put( pubmedquery ) #put task in the queue
self.q.join()
print('time:',time.perf_counter() - start)
Total = 0
Fails = 0
for globalresults in self.firstResults:
# globalresults = self.medlineEsearch(pubmedquery)
Total += 1
if globalresults["queryKey"]==False:
Fails += 1
if globalresults["count"] > 0 :
N+=globalresults["count"]
queryhyperdata = { "string" : globalresults["query"]
, "count" : globalresults["count"]
, "queryKey" : globalresults["queryKey"]
, "webEnv" : globalresults["webEnv"]
, "retmax" : 0
}
thequeries.append ( queryhyperdata )
print("Total Number:", N,"publications")
print("And i want just:",globalLimit,"publications")
print("---------------------------------------\n")
for i,query in enumerate(thequeries):
k = query["count"]
proportion = k/float(N)
retmax_forthisyear = int(round(globalLimit*proportion))
query["retmax"] = retmax_forthisyear
if query["retmax"] == 0 : query["retmax"]+=1
print(query["string"],"\t[",k,">",query["retmax"],"]")
if ((Fails+1)/(Total+1)) == 1 : # for identifying the epic fail or connection error
thequeries = [False]
return thequeries