Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
gargantext
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
humanities
gargantext
Commits
7902f2bc
Commit
7902f2bc
authored
Jan 14, 2015
by
Administrator
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[FEAT] Adding new feature (core python only) for diachronic specificity.
parent
d9d537f7
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
76 additions
and
0 deletions
+76
-0
diachronic_specificity.py
analysis/diachronic_specificity.py
+76
-0
No files found.
analysis/diachronic_specificity.py
0 → 100644
View file @
7902f2bc
import
sqlalchemy
from
gargantext_web
import
api
from
node
import
models
from
sqlalchemy
import
create_engine
from
sqlalchemy.sql
import
func
import
numpy
as
np
import
collections
NodeType
=
models
.
NodeType
.
sa
NodeNgram
=
models
.
Node_Ngram
.
sa
NodeNodeNgram
=
models
.
NodeNgramNgram
.
sa
Ngram
=
models
.
Ngram
.
sa
Node
=
models
.
Node
.
sa
Corpus
=
models
.
Corpus
.
sa
def
get_session
():
import
sqlalchemy.orm
from
django.db
import
connections
from
sqlalchemy.orm
import
sessionmaker
from
aldjemy.core
import
get_engine
alias
=
'default'
connection
=
connections
[
alias
]
engine
=
create_engine
(
"postgresql+psycopg2://alexandre:C8kdcUrAQy66U@localhost/gargandb"
,
use_native_hstore
=
True
)
Session
=
sessionmaker
(
bind
=
engine
)
return
Session
()
session
=
get_session
()
def
result2dict
(
query
):
results
=
dict
()
for
result
in
query
:
if
result
[
0
]
is
not
None
:
results
[
result
[
0
]]
=
result
[
1
]
return
(
results
)
def
diachronic_specificity
(
corpus_id
,
string
,
order
=
True
):
'''
Take as parameter Corpus primary key and text of ngrams.
Result is a dictionnary.
Keys are period (years for now)
Values are measure to indicate diachronic specificity.
Nowadays, the measure is rather simple: distance of frequency of period from mean of frequency of all corpus.
'''
corpus
=
session
.
query
(
Node
)
.
get
(
int
(
corpus_id
))
ngram
=
session
.
query
(
Ngram
)
.
filter
(
Ngram
.
terms
==
string
)
.
first
()
ngram_frequency_query
=
session
.
query
(
Node
.
metadata
[
'publication_year'
],
func
.
count
(
'*'
))
.
join
(
NodeNgram
,
Node
.
id
==
NodeNgram
.
node_id
)
.
filter
(
NodeNgram
.
ngram
==
ngram
)
.
filter
(
Node
.
parent_id
==
corpus
.
id
)
.
group_by
(
Node
.
metadata
[
'publication_year'
])
.
all
()
document_year_sum_query
=
session
.
query
(
Node
.
metadata
[
'publication_year'
],
func
.
count
(
'*'
))
.
filter
(
Node
.
parent_id
==
corpus
.
id
)
.
group_by
(
Node
.
metadata
[
'publication_year'
])
.
all
()
document_filterByngram_year
=
result2dict
(
ngram_frequency_query
)
document_all_year
=
result2dict
(
document_year_sum_query
)
#print(document_all_year)
data
=
dict
()
for
year
in
document_all_year
.
keys
():
data
[
year
]
=
document_filterByngram_year
.
get
(
year
,
0
)
/
document_all_year
[
year
]
mean
=
np
.
mean
(
list
(
data
.
values
()))
data_dict
=
dict
(
zip
(
data
.
keys
(),
list
(
map
(
lambda
x
:
x
-
mean
,
data
.
values
()))))
if
order
==
True
:
return
collections
.
OrderedDict
(
sorted
(
data_dict
.
items
()))
else
:
return
data_dict
# For tests
#diachronic_specificity(102750, "bayer", order=True)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment