Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
gargantext
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
humanities
gargantext
Commits
b6d6a1d4
Commit
b6d6a1d4
authored
Nov 18, 2015
by
delanoe
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[FEAT] Distributional with minmax threshold.
parent
e848d4cc
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
182 additions
and
148 deletions
+182
-148
distance.py
analysis/distance.py
+181
-0
functions.py
analysis/functions.py
+1
-148
No files found.
analysis/distance.py
0 → 100644
View file @
b6d6a1d4
from
admin.utils
import
PrintException
from
gargantext_web.db
import
*
from
collections
import
defaultdict
from
django.db
import
connection
,
transaction
import
math
from
math
import
log
import
scipy
from
gargantext_web.db
import
get_or_create_node
import
pandas
as
pd
from
copy
import
copy
import
numpy
as
np
import
scipy
import
networkx
as
nx
from
networkx.readwrite
import
json_graph
from
rest_v1_0.api
import
JsonHttpResponse
from
analysis.louvain
import
best_partition
,
generate_dendogram
,
partition_at_level
from
ngram.lists
import
listIds
from
sqlalchemy.orm
import
aliased
def
diag_null
(
x
):
return
x
-
x
*
scipy
.
eye
(
x
.
shape
[
0
])
def
do_distance
(
cooc_id
,
field1
=
None
,
field2
=
None
,
isMonopartite
=
True
,
distance
=
'conditional'
):
'''
do_distance :: Int -> (Graph, Partition, {ids}, {weight})
'''
matrix
=
defaultdict
(
lambda
:
defaultdict
(
float
))
ids
=
defaultdict
(
lambda
:
defaultdict
(
int
))
labels
=
dict
()
weight
=
dict
()
Cooc
=
aliased
(
NodeNgramNgram
)
query
=
session
.
query
(
Cooc
)
.
filter
(
Cooc
.
node_id
==
cooc_id
)
.
all
()
for
cooc
in
query
:
matrix
[
cooc
.
ngramx_id
][
cooc
.
ngramy_id
]
=
cooc
.
score
matrix
[
cooc
.
ngramy_id
][
cooc
.
ngramx_id
]
=
cooc
.
score
ids
[
cooc
.
ngramx_id
]
=
(
field1
,
cooc
.
ngramx_id
)
ids
[
cooc
.
ngramy_id
]
=
(
field2
,
cooc
.
ngramy_id
)
weight
[
cooc
.
ngramx_id
]
=
weight
.
get
(
cooc
.
ngramx_id
,
0
)
+
cooc
.
score
weight
[
cooc
.
ngramy_id
]
=
weight
.
get
(
cooc
.
ngramy_id
,
0
)
+
cooc
.
score
x
=
pd
.
DataFrame
(
matrix
)
.
fillna
(
0
)
if
distance
==
'conditional'
:
x
=
x
/
x
.
sum
(
axis
=
1
)
#y = y / y.sum(axis=0)
xs
=
x
.
sum
(
axis
=
1
)
-
x
ys
=
x
.
sum
(
axis
=
0
)
-
x
# top inclus ou exclus
n
=
(
xs
+
ys
)
/
(
2
*
(
x
.
shape
[
0
]
-
1
))
# top generic or specific
m
=
(
xs
-
ys
)
/
(
2
*
(
x
.
shape
[
0
]
-
1
))
n
=
n
.
sort
(
inplace
=
False
)
m
=
m
.
sort
(
inplace
=
False
)
nodes_included
=
500
#int(round(size/20,0))
#nodes_excluded = int(round(size/10,0))
nodes_specific
=
500
#int(round(size/10,0))
#nodes_generic = int(round(size/10,0))
# TODO use the included score for the node size
n_index
=
pd
.
Index
.
intersection
(
x
.
index
,
n
.
index
[:
nodes_included
])
# Generic:
#m_index = pd.Index.intersection(x.index, m.index[:nodes_generic])
# Specific:
m_index
=
pd
.
Index
.
intersection
(
x
.
index
,
m
.
index
[
-
nodes_specific
:])
#m_index = pd.Index.intersection(x.index, n.index[:nodes_included])
x_index
=
pd
.
Index
.
union
(
n_index
,
m_index
)
xx
=
x
[
list
(
x_index
)]
.
T
[
list
(
x_index
)]
# Removing unconnected nodes
xxx
=
xx
.
values
threshold
=
min
(
xxx
.
max
(
axis
=
1
))
matrix_filtered
=
np
.
where
(
xxx
>=
threshold
,
xxx
,
0
)
#matrix_filtered = matrix_filtered.resize((90,90))
G
=
nx
.
from_numpy_matrix
(
np
.
matrix
(
matrix_filtered
))
G
=
nx
.
relabel_nodes
(
G
,
dict
(
enumerate
([
ids
[
id_
][
1
]
for
id_
in
list
(
xx
.
columns
)])))
elif
distance
==
'cosine'
:
xs
=
x
/
np
.
sqrt
((
x
**
2
)
.
sum
(
axis
=
1
)
*
(
x
**
2
)
.
sum
(
axis
=
0
))
n
=
np
.
max
(
xs
.
sum
(
axis
=
1
))
m
=
np
.
min
(
xs
.
sum
(
axis
=
1
))
elif
distance
==
'distributional'
:
mi
=
defaultdict
(
lambda
:
defaultdict
(
int
))
total_cooc
=
x
.
sum
()
.
sum
()
for
i
in
matrix
.
keys
():
si
=
sum
([
matrix
[
i
][
j
]
for
j
in
matrix
[
i
]
.
keys
()
if
i
!=
j
])
for
j
in
matrix
[
i
]
.
keys
():
sj
=
sum
([
matrix
[
j
][
k
]
for
k
in
matrix
[
j
]
.
keys
()
if
j
!=
k
])
if
i
!=
j
:
mi
[
i
][
j
]
=
log
(
matrix
[
i
][
j
]
/
((
si
*
sj
)
/
total_cooc
)
)
# r = result
r
=
defaultdict
(
lambda
:
defaultdict
(
int
))
for
i
in
matrix
.
keys
():
for
j
in
matrix
.
keys
():
sumMin
=
sum
(
[
min
(
mi
[
i
][
k
],
mi
[
j
][
k
])
for
k
in
matrix
.
keys
()
if
i
!=
j
and
k
!=
i
and
k
!=
j
and
mi
[
i
][
k
]
>
0
]
)
sumMi
=
sum
(
[
mi
[
i
][
k
]
for
k
in
matrix
.
keys
()
if
k
!=
i
and
k
!=
j
and
mi
[
i
][
k
]
>
0
]
)
try
:
r
[
i
][
j
]
=
sumMin
/
sumMi
except
Exception
as
error
:
r
[
i
][
j
]
=
0
# Need to filter the weak links, automatic threshold here
minmax
=
min
([
max
([
r
[
i
][
j
]
for
i
in
r
.
keys
()])
for
j
in
r
.
keys
()])
G
=
nx
.
DiGraph
()
G
.
add_edges_from
(
[
(
i
,
j
,
{
'weight'
:
r
[
i
][
j
]})
for
i
in
r
.
keys
()
for
j
in
r
.
keys
()
if
i
!=
j
and
r
[
i
][
j
]
>
minmax
and
r
[
i
][
j
]
>
r
[
j
][
i
]
]
)
# Removing too connected nodes (find automatic way to do it)
#edges_to_remove = [ e for e in G.edges_iter() if
# nodes_to_remove = [n for n in degree if degree[n] <= 1]
# G.remove_nodes_from(nodes_to_remove)
def
getWeight
(
item
):
return
item
[
1
]
#
# node_degree = sorted(G.degree().items(), key=getWeight, reverse=True)
# #print(node_degree)
# nodes_too_connected = [n[0] for n in node_degree[0:(round(len(node_degree)/5))]]
#
# for n in nodes_too_connected:
# n_edges = list()
# for v in nx.neighbors(G,n):
# #print((n, v), G[n][v]['weight'], ":", (v,n), G[v][n]['weight'])
# n_edges.append(((n, v), G[n][v]['weight']))
#
# n_edges_sorted = sorted(n_edges, key=getWeight, reverse=True)
# #G.remove_edges_from([ e[0] for e in n_edges_sorted[round(len(n_edges_sorted)/2):]])
# #G.remove_edges_from([ e[0] for e in n_edges_sorted[(round(len(nx.neighbors(G,n))/3)):]])
# G.remove_edges_from([ e[0] for e in n_edges_sorted[10:]])
G
.
remove_nodes_from
(
nx
.
isolates
(
G
))
partition
=
best_partition
(
G
.
to_undirected
())
return
(
G
,
partition
,
ids
,
weight
)
analysis/functions.py
View file @
b6d6a1d4
...
...
@@ -12,6 +12,7 @@ import scipy
from
gargantext_web.db
import
get_or_create_node
from
analysis.cooccurrences
import
do_cooc
from
analysis.distance
import
do_distance
import
pandas
as
pd
from
copy
import
copy
...
...
@@ -26,154 +27,6 @@ from analysis.louvain import best_partition, generate_dendogram, partition_at_le
from
ngram.lists
import
listIds
from
sqlalchemy.orm
import
aliased
def
diag_null
(
x
):
return
x
-
x
*
scipy
.
eye
(
x
.
shape
[
0
])
def
do_distance
(
cooc_id
,
field1
=
None
,
field2
=
None
,
isMonopartite
=
True
,
distance
=
'conditional'
):
'''
do_distance :: Int -> (Graph, Partition, {ids}, {weight})
'''
matrix
=
defaultdict
(
lambda
:
defaultdict
(
float
))
ids
=
defaultdict
(
lambda
:
defaultdict
(
int
))
labels
=
dict
()
weight
=
dict
()
Cooc
=
aliased
(
NodeNgramNgram
)
query
=
session
.
query
(
Cooc
)
.
filter
(
Cooc
.
node_id
==
cooc_id
)
.
all
()
for
cooc
in
query
:
matrix
[
cooc
.
ngramx_id
][
cooc
.
ngramy_id
]
=
cooc
.
score
matrix
[
cooc
.
ngramy_id
][
cooc
.
ngramx_id
]
=
cooc
.
score
ids
[
cooc
.
ngramx_id
]
=
(
field1
,
cooc
.
ngramx_id
)
ids
[
cooc
.
ngramy_id
]
=
(
field2
,
cooc
.
ngramy_id
)
weight
[
cooc
.
ngramx_id
]
=
weight
.
get
(
cooc
.
ngramx_id
,
0
)
+
cooc
.
score
weight
[
cooc
.
ngramy_id
]
=
weight
.
get
(
cooc
.
ngramy_id
,
0
)
+
cooc
.
score
x
=
pd
.
DataFrame
(
matrix
)
.
fillna
(
0
)
if
distance
==
'conditional'
:
x
=
x
/
x
.
sum
(
axis
=
1
)
#y = y / y.sum(axis=0)
xs
=
x
.
sum
(
axis
=
1
)
-
x
ys
=
x
.
sum
(
axis
=
0
)
-
x
# top inclus ou exclus
n
=
(
xs
+
ys
)
/
(
2
*
(
x
.
shape
[
0
]
-
1
))
# top generic or specific
m
=
(
xs
-
ys
)
/
(
2
*
(
x
.
shape
[
0
]
-
1
))
n
=
n
.
sort
(
inplace
=
False
)
m
=
m
.
sort
(
inplace
=
False
)
nodes_included
=
500
#int(round(size/20,0))
#nodes_excluded = int(round(size/10,0))
nodes_specific
=
500
#int(round(size/10,0))
#nodes_generic = int(round(size/10,0))
# TODO use the included score for the node size
n_index
=
pd
.
Index
.
intersection
(
x
.
index
,
n
.
index
[:
nodes_included
])
# Generic:
#m_index = pd.Index.intersection(x.index, m.index[:nodes_generic])
# Specific:
m_index
=
pd
.
Index
.
intersection
(
x
.
index
,
m
.
index
[
-
nodes_specific
:])
#m_index = pd.Index.intersection(x.index, n.index[:nodes_included])
x_index
=
pd
.
Index
.
union
(
n_index
,
m_index
)
xx
=
x
[
list
(
x_index
)]
.
T
[
list
(
x_index
)]
# Removing unconnected nodes
xxx
=
xx
.
values
threshold
=
min
(
xxx
.
max
(
axis
=
1
))
matrix_filtered
=
np
.
where
(
xxx
>=
threshold
,
xxx
,
0
)
#matrix_filtered = matrix_filtered.resize((90,90))
G
=
nx
.
from_numpy_matrix
(
np
.
matrix
(
matrix_filtered
))
G
=
nx
.
relabel_nodes
(
G
,
dict
(
enumerate
([
ids
[
id_
][
1
]
for
id_
in
list
(
xx
.
columns
)])))
elif
distance
==
'cosine'
:
xs
=
x
/
np
.
sqrt
((
x
**
2
)
.
sum
(
axis
=
1
)
*
(
x
**
2
)
.
sum
(
axis
=
0
))
n
=
np
.
max
(
xs
.
sum
(
axis
=
1
))
m
=
np
.
min
(
xs
.
sum
(
axis
=
1
))
elif
distance
==
'distributional'
:
mi
=
defaultdict
(
lambda
:
defaultdict
(
int
))
total_cooc
=
x
.
sum
()
.
sum
()
for
i
in
matrix
.
keys
():
si
=
sum
([
matrix
[
i
][
j
]
for
j
in
matrix
[
i
]
.
keys
()
if
i
!=
j
])
for
j
in
matrix
[
i
]
.
keys
():
sj
=
sum
([
matrix
[
j
][
k
]
for
k
in
matrix
[
j
]
.
keys
()
if
j
!=
k
])
if
i
!=
j
:
mi
[
i
][
j
]
=
log
(
matrix
[
i
][
j
]
/
((
si
*
sj
)
/
total_cooc
)
)
# r = result
r
=
defaultdict
(
lambda
:
defaultdict
(
int
))
for
i
in
matrix
.
keys
():
for
j
in
matrix
.
keys
():
sumMin
=
sum
(
[
min
(
mi
[
i
][
k
],
mi
[
j
][
k
])
for
k
in
matrix
.
keys
()
if
i
!=
j
and
k
!=
i
and
k
!=
j
and
mi
[
i
][
k
]
>
0
]
)
sumMi
=
sum
(
[
mi
[
i
][
k
]
for
k
in
matrix
.
keys
()
if
k
!=
i
and
k
!=
j
and
mi
[
i
][
k
]
>
0
]
)
try
:
r
[
i
][
j
]
=
sumMin
/
sumMi
except
Exception
as
error
:
r
[
i
][
j
]
=
0
G
=
nx
.
DiGraph
()
G
.
add_edges_from
(
[
(
i
,
j
,
{
'weight'
:
r
[
i
][
j
]})
for
i
in
r
.
keys
()
for
j
in
r
.
keys
()
if
i
!=
j
and
r
[
i
][
j
]
>
0
and
r
[
i
][
j
]
>
r
[
j
][
i
]
]
)
# Removing too connected nodes (find automatic way to do it)
#edges_to_remove = [ e for e in G.edges_iter() if
# nodes_to_remove = [n for n in degree if degree[n] <= 1]
# G.remove_nodes_from(nodes_to_remove)
def
getWeight
(
item
):
return
item
[
1
]
#
# node_degree = sorted(G.degree().items(), key=getWeight, reverse=True)
# #print(node_degree)
# nodes_too_connected = [n[0] for n in node_degree[0:(round(len(node_degree)/5))]]
#
# for n in nodes_too_connected:
# n_edges = list()
# for v in nx.neighbors(G,n):
# #print((n, v), G[n][v]['weight'], ":", (v,n), G[v][n]['weight'])
# n_edges.append(((n, v), G[n][v]['weight']))
#
# n_edges_sorted = sorted(n_edges, key=getWeight, reverse=True)
# #G.remove_edges_from([ e[0] for e in n_edges_sorted[round(len(n_edges_sorted)/2):]])
# #G.remove_edges_from([ e[0] for e in n_edges_sorted[(round(len(nx.neighbors(G,n))/3)):]])
# G.remove_edges_from([ e[0] for e in n_edges_sorted[10:]])
G
.
remove_nodes_from
(
nx
.
isolates
(
G
))
partition
=
best_partition
(
G
.
to_undirected
())
return
(
G
,
partition
,
ids
,
weight
)
def
get_cooc
(
request
=
None
,
corpus
=
None
,
field1
=
'ngrams'
,
field2
=
'ngrams'
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment